Abstract

Holographic index gratings based on a zero-electric-field photorefractive effect are recorded at high temperatures in copper-doped periodically poled lithium niobate crystals. The interplay between the domain structure and the index grating is studied: the fundamental grating with spatial frequency K is strongly suppressed. Pronounced sideband gratings with Ks=K+sG appear, where G is the domain grating vector and s is an integer number. After development, an additional grating based on the electro-optic effect shows up. In contrast with the previously mentioned gratings, this grating allows anisotropic diffraction.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
    [CrossRef]
  2. L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
    [CrossRef]
  3. A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, Opt. Lett. 27, 1815 (2002).
    [CrossRef]
  4. U. Hartwig, K. Peithmann, B. Sturman, and K. Buse, Appl. Phys. B 80, 227 (2005).
    [CrossRef]
  5. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
    [CrossRef]
  6. S. Miyazawa, J. Appl. Phys. 50, 4599 (1979).
    [CrossRef]
  7. R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
    [CrossRef]
  8. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
    [CrossRef]
  9. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
    [CrossRef]
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  11. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  12. L. Arizmendi, E. M. de Miguel-Sanz, and M. Carrascosa, Opt. Lett. 23, 960 (1998).
    [CrossRef]
  13. E. Podivilov, B. Sturman, M. Goul'kov, S. Odoulov, G. Calvo, F. Agulló-López, and M. Carrascosa, J. Opt. Soc. Am. B 19, 1582 (2002).
    [CrossRef]
  14. U. Hartwig, M. Kösters, T. Woike, K. Buse, A. Shumelyuk, and S. Odoulov, Opt. Lett. 31, 583 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

U. Hartwig, K. Peithmann, B. Sturman, and K. Buse, Appl. Phys. B 80, 227 (2005).
[CrossRef]

2004 (1)

L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
[CrossRef]

2002 (2)

2000 (1)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

1998 (2)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

L. Arizmendi, E. M. de Miguel-Sanz, and M. Carrascosa, Opt. Lett. 23, 960 (1998).
[CrossRef]

1997 (1)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

1985 (1)

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

1979 (1)

S. Miyazawa, J. Appl. Phys. 50, 4599 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Agulló-López, F.

Arizmendi, L.

Breer, S.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Buse, K.

U. Hartwig, M. Kösters, T. Woike, K. Buse, A. Shumelyuk, and S. Odoulov, Opt. Lett. 31, 583 (2006).
[CrossRef] [PubMed]

U. Hartwig, K. Peithmann, B. Sturman, and K. Buse, Appl. Phys. B 80, 227 (2005).
[CrossRef]

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Calvo, G.

Carrascosa, M.

Chiang, A. C.

de Miguel-Sanz, E. M.

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Goul'kov, M.

Hartwig, U.

Huang, Y. C.

Hukriede, J.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kösters, M.

Krätzig, E.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Lin, Y. Y.

Miyazawa, S.

S. Miyazawa, J. Appl. Phys. 50, 4599 (1979).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Odoulov, S.

Peithmann, K.

U. Hartwig, K. Peithmann, B. Sturman, and K. Buse, Appl. Phys. B 80, 227 (2005).
[CrossRef]

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Podivilov, E.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Shumelyuk, A.

Shy, J. T.

Sturman, B.

Vogt, H.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

Wang, T. D.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Woike, T.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
[CrossRef]

Appl. Phys. B (1)

U. Hartwig, K. Peithmann, B. Sturman, and K. Buse, Appl. Phys. B 80, 227 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys. (1)

S. Miyazawa, J. Appl. Phys. 50, 4599 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. B (2)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, Phys. Rev. B 61, 4615 (2000).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Phys. Status Solidi A (1)

L. Arizmendi, Phys. Status Solidi A 201, 253 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, Rev. Sci. Instrum. 69, 1591 (1998).
[CrossRef]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic illustration of the orientations of the crystal and the domains; the x-axis of the crystal and the grating vectors G and K are almost parallel. (b) The recording process and the diffraction after development of the grating are anisotropic. (c) For the readout of the high-temperature-recorded grating, both the incident beam and the diffracted beam are ordinarily polarized.

Fig. 2
Fig. 2

(a)–(e) Diffraction efficiencies η s as a function of the angular difference Δ θ out with regard to the position of the principal maximum ( s = 0 ) . The angular separation between the principal maximum and a diffracted beam is ± s × 0.8 ° .

Fig. 3
Fig. 3

(a) Holographic grating formation for the zero-electric-field photorefractive effect. (b) After development.

Tables (1)

Tables Icon

Table 1 Maximum Diffraction Efficiencies η s for the Light Diffracted from the Grating with K s ± s G (Error is Estimated as ± 20 % ) and Corresponding Maximum Refractive Index Changes Δ n s ( ± 10 % ) Measured for λ read = 633 nm

Metrics