Abstract

Transformation and inverse transformation between a free-space linearly polarized beam and the vectorial vortex mode of a circular hollow waveguide by use of Pancharatnam–Berry phase optical elements is proposed. Demonstration was achieved by fabricating GaAs subwavelength gratings and utilizing a 300μm diameter hollow metallic waveguide for 10.6μm wavelength CO2 laser radiation. The mode transformations and the excitation of a single vectorial mode inside the hollow waveguide were verified by full polarization measurements. In addition, the inverse mode transformation of the single vectorial mode excitation in the waveguide enabled us to experimentally obtain a linearly polarized bright spot with a high central lobe.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  2. M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
    [CrossRef]
  3. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Express 14, 4208 (2006).
    [CrossRef] [PubMed]
  4. H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
    [CrossRef]
  5. J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
    [CrossRef]
  6. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, Opt. Express 14, 3929 (2006).
    [CrossRef] [PubMed]
  7. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
    [CrossRef] [PubMed]
  8. M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
    [CrossRef]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  10. E. Hasman, G. Biener, A. Niv, and V. Kleiner, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 215-289.
    [CrossRef]
  11. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 30, 2933 (2005).
    [CrossRef] [PubMed]
  12. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
    [CrossRef]
  13. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
    [CrossRef]

2006

2005

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 30, 2933 (2005).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

2002

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

2000

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

1984

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Abouraddy, A. F.

Bayindir, M.

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

Benoit, G.

Biener, G.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Brewster, M. M.

Codemard, C.

J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
[CrossRef]

Fink, Y.

O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, Opt. Express 14, 3929 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Friesem, A. A.

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Hasman, E.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Express 14, 4208 (2006).
[CrossRef] [PubMed]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 30, 2933 (2005).
[CrossRef] [PubMed]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
[CrossRef]

E. Hasman, G. Biener, A. Niv, and V. Kleiner, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 215-289.
[CrossRef]

Hinczewski, D. S.

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

Ibanescu, M.

Jhe, W.

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

Joannopoulos, J. D.

O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, Opt. Express 14, 3929 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Johnson, E. G.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

Kim, J. S.

J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
[CrossRef]

Kleiner, V.

Kuriki, K.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Mehta, A.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Miyagi, M.

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

Mohammed, W. S.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Nilsson, J.

J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
[CrossRef]

Niv, A.

Noh, H. R.

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

Orf, N. D.

Oron, R.

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Pitchumani, M.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Rodriguez, A.

Sahu, J. K.

J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Shapira, O.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Viens, J.

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

Viens, J. F.

Appl. Phys. Lett.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Electron. Lett.

J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

J. Lightwave Technol.

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

Nat. Mater.

M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005).
[CrossRef]

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rep.

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

Other

E. Hasman, G. Biener, A. Niv, and V. Kleiner, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 215-289.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Concept of vectorial vortex mode transformation and inverse transformation for a hollow metallic waveguide mode using PBOEs. Inset, scanning electron microscope image of the PBOE. Abbreviations defined in text.

Fig. 2
Fig. 2

(a) and (b) Fields at the entrance and exit of the hollow metallic waveguide, respectively, for mode value m = 2 , (c) after a 4 - f system without a PBOE, (d) with the PBOE in the Fourier plane. The first, second, and third rows show the intensity, intensity after a polarizer, and the measured (dots) and calculated (solid curve) intensity cross sections, respectively. The cross section of Fig. 2d contains the calculated result for mode value m = 1 (blue dashed curve). The fourth row shows the measured polarization orientation of the beam. The respective locations along the setup are also indicated in Fig. 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 0 m = J 1 ( k m r ) exp ( i γ z ) φ ,
E PBOE = circ ( r r 0 ) i 2 [ exp ( i 2 θ ) L + [ exp ( i 2 θ ) R ] ,

Metrics