Abstract

An optical modulator that provides broadband phase modulation of microwave subcarriers directly in the photonic domain has been proposed. This modulator, which involves no millimeter-wave device, can provide a dispersion-tolerant output signal with arbitrary phase shift. Therefore it has wide applications in high-frequency radio over fiber systems employing complex constellation modulation. Simulations and a proof-of-concept experiment demonstrate the feasibility of the modulator.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Smulders, IEEE Commun. Mag. 40, 140 (2002).
    [CrossRef]
  2. M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
    [CrossRef]
  3. Y. Doi, S. Fukushima, T. Ohno, Y. Matsuoka, and H. Takeuchi, J. Lightwave Technol. 18, 301 (2000).
    [CrossRef]
  4. A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
    [CrossRef]
  5. A. Loayssa and D. Benito, IEEE Electron. Lett. 40, 21 (2004).
    [CrossRef]
  6. A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
    [CrossRef]
  7. S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

2004 (1)

A. Loayssa and D. Benito, IEEE Electron. Lett. 40, 21 (2004).
[CrossRef]

2003 (1)

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

2002 (2)

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
[CrossRef]

P. Smulders, IEEE Commun. Mag. 40, 140 (2002).
[CrossRef]

2000 (2)

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Y. Doi, S. Fukushima, T. Ohno, Y. Matsuoka, and H. Takeuchi, J. Lightwave Technol. 18, 301 (2000).
[CrossRef]

Benito, D.

A. Loayssa and D. Benito, IEEE Electron. Lett. 40, 21 (2004).
[CrossRef]

Corral, J. L.

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

Doi, Y.

Fukushima, S.

Hong, S.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Kim, J.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Kim, J. S.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Lim, J.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Loayssa, A.

A. Loayssa and D. Benito, IEEE Electron. Lett. 40, 21 (2004).
[CrossRef]

Luo, T.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Martí, J.

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

Martinez, A.

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

Matsuoka, Y.

McGeehan, J. E.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Motaghian Nezam, S. M. R.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Ohno, T.

Pan, Z.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Park, C. Y.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Polo, V.

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

Pyum, K. E.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Sahin, A. B.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Seeds, A. J.

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
[CrossRef]

Shin, M.

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

Smulders, P.

P. Smulders, IEEE Commun. Mag. 40, 140 (2002).
[CrossRef]

Song, Y. W.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Takeuchi, H.

Willner, A. E.

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

IEEE Commun. Mag. (1)

P. Smulders, IEEE Commun. Mag. 40, 140 (2002).
[CrossRef]

IEEE Electron. Lett. (1)

A. Loayssa and D. Benito, IEEE Electron. Lett. 40, 21 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Shin, J. Lim, C. Y. Park, J. Kim, J. S. Kim, K. E. Pyum, and S. Hong, IEEE Photon. Technol. Lett. 12, 516 (2000).
[CrossRef]

A. Martinez, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 15, 772 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Other (1)

S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, Z. Pan, T. Luo, Y. W. Song, and A. E. Willner, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper FM7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System setup of the subcarrier phase modulation method. Abbreviations defined in text.

Fig. 2
Fig. 2

Results of the numerical study: (a) DC dependence of the output subcarrier phase shift; the x axis is the ratio of DC bias to the V π of optical phase modulator. (b) Simulated spectrum of the detected RF signal. The subcarrier is modulated by a 1 GHz sine wave, with a maximum phase shift of 98°. (c) Simulated eye diagrams of a 2.5 Gb i t s s differential phase-shift keying signal The FBG has a 0.08 nm , 3 dB bandwidth and 10 dB rejection.

Fig. 3
Fig. 3

Measured DC dependence of the output subcarrier phase shift.

Fig. 4
Fig. 4

Phase variance of the subcarrier: x axis, 2 ms div ; y axis, 45°/div. (a) Square wave with 3 V peak-to-peak (p-p) voltage and a 2.5 ms period is applied to the modulator. (b) sawtooth wave with 6 V p-p voltage and a 2.5 ms period is applied to the modulator.

Fig. 5
Fig. 5

Opctical spectrum of the system: x axis, 0.03 nm div ; y axis, 10 dB div . (a) 10 GHz subcarrier with 1 GHz phase modulation. (b) 10 GHz subcarrier without modulation.

Fig. 6
Fig. 6

RF spectrum of the detected signal after 25 km single-mode fiber. Central frequency, 10 GHz ; x axis, 600 MHz div ; y axis, 5 dB div .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i = R { P 1 + P 2 + 2 P 1 P 2 cos [ ( ω 1 ω 2 ) t + ϕ 1 ϕ 2 ] } ,

Metrics