Abstract

We demonstrate propagation of 14nJ femtosecond pulses through a large-mode-area, higher-order-mode (HOM) fiber with an effective area of 2100μm2. The pulses propagate stably in the LP07 mode of the fiber through lengths as long as 12m. The strongly chirped pulses exiting the amplifier fiber are dechirped by the high-order-mode fiber, resulting in pulses with a peak power of 61kW after propagation in 5m of the positive-dispersion fiber. A small amount of self-phase modulation is observed in the compressed pulses and is described well by a nonlinear Schrödinger equation model that takes into account the measured effective area and dispersion of the HOM fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen, Opt. Express 12, 4999 (2004).
    [CrossRef] [PubMed]
  2. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. N. Fermann, Opt. Lett. 29, 2467 (2004).
    [CrossRef] [PubMed]
  3. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, Opt. Lett. 28, 707 (2003).
    [CrossRef] [PubMed]
  4. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Mller, Appl. Opt. 38, 7393 (1999).
    [CrossRef]
  5. N. Nishizawa and T. Goto, Jpn. J. Appl. Phys. , Part 2 Jpn. J. Appl. Phys. 40, L36 (2001).
    [CrossRef]
  6. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, Opt. Lett. 28, 643 (2003).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  8. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [CrossRef]
  9. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, Opt. Lett. 30, 2855 (2005).
    [CrossRef] [PubMed]
  10. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, Opt. Express 14, 2715 (2006).
    [CrossRef] [PubMed]
  11. J. Limpret, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, Opt. Express 11, 3332 (2003).
    [CrossRef]
  12. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, Opt. Express 11, 2832 (2003).
    [CrossRef] [PubMed]
  13. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 1797 (2006).
    [CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (2)

2003 (4)

2001 (2)

N. Nishizawa and T. Goto, Jpn. J. Appl. Phys. , Part 2 Jpn. J. Appl. Phys. 40, L36 (2001).
[CrossRef]

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

1999 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Bizheva, K.

Broeng, J.

de Matos, C.

DiMarcello, F.

Dimarcello, F. V.

Dong, L.

Drexler, W.

Ermeneux, S.

Feder, K.

Fermann, M. N.

Fittinghoff, D. N.

Fleming, J.

Fox, R. W.

Galvanauskas, A.

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

Ghalmi, S.

Goto, T.

N. Nishizawa and T. Goto, Jpn. J. Appl. Phys. , Part 2 Jpn. J. Appl. Phys. 40, L36 (2001).
[CrossRef]

Hansen, K.

Hansen, T.

Hartl, I.

Hermann, B.

Hoelzenbein, T.

Holzwarth, R.

Hong, F.-L.

Inaba, H.

Jorgensen, C. G.

Jørgensen, C.

Limpert, J.

Limpret, J.

Matsumoto, H.

McLaughlin, J. M.

Mei, M.

Millard, A. C.

Minoshima, K.

Mller, M.

Monberg, E.

Newbury, N. R.

Nicholson, J. W.

Nishizawa, N.

N. Nishizawa and T. Goto, Jpn. J. Appl. Phys. , Part 2 Jpn. J. Appl. Phys. 40, L36 (2001).
[CrossRef]

Nolte, S.

Onae, A.

Pehamberger, H.

Peng, X.

Povazay, B.

Ramachandran, S.

Röser, F.

Rothhardt, J.

Salin, F.

Sattmann, H.

Schibli, T. R.

Schmidt, O.

Schreiber, T.

Squier, J. A.

Taylor, J.

Tunnermann, A.

Tünnermann, A.

Veng, T.

Wacheck, V.

Washburn, B. R.

Westbrook, P. S.

Wilson, K. R.

Wiseman, P. W.

Wisk, P.

Wong, W. S.

Yablon, A.

Yan, M. F.

Yvernault, P.

Zellmer, H.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Nishizawa and T. Goto, Jpn. J. Appl. Phys. , Part 2 Jpn. J. Appl. Phys. 40, L36 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculation of the ratio of the dispersion length to the nonlinear length as a function of effective area for a 100 fs , 10 nJ pulse. Points corresponding to standard SMF (SSMF), conventional LMA fiber, and the LMA-HOM fiber are indicated.

Fig. 2
Fig. 2

Properties of the HOMs. (a) Dispersion of several different HOMs calculated from the measured index profile. (b) Dispersion and A eff as a function of mode number at 1550 nm . (c) L D L NL as a function of mode number for a 100 fs , 10 nJ pulse. (d) RDS as a function of mode number at 1550 nm .

Fig. 3
Fig. 3

(a) Schematic of the experimental setup. Mode images are shown for the fundamental and LP 07 mode of the HOM fiber. (b) Measured correlation before launch into the LPG. (c) Compressed pulse after 5 m propagation in the HOM fiber.

Fig. 4
Fig. 4

Pulse spectra after (a) 5 m and (b) 12 m propagation in the HOM. Solid curve, input reference spectra; dashed curve, measured spectra; dotted–dash curve, calculated from an NLSE model. For comparison, the spectrum measured after 10 m of SMF is shown in (b) as a dotted curve.

Metrics