Abstract

A dispersive grating compressor was included in a fiber ring laser to generate an unequally spaced frequency comb spanning 15491552nm. Beating of nearby modes in the comb naturally assigns unique amplitude modulation frequencies to each spectral component emitted. The source contains no moving parts. The single-mode fiber-coupled output is directed through hydrogen cyanide gas and detected by a photodiode. A Fourier transform of a 1ms record yields a spectrum that agrees with results from a grating spectrometer at 0.06nm resolution. By engineering stable, broadband combs, the technique could result in a universal and simple approach for spectroscopy at almost arbitrary measurement speeds and spectral resolutions limited only by Fourier principles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).
  2. G. W. Chantry, Long-Wave Optics: Vol. 1. the Science and Technology of Infrared and Near-Millimetre Waves (Academic, 1984), p. 790.
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005).
    [Crossref] [PubMed]
  4. D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
    [Crossref]
  5. D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," U.S. patent 5,748,309 (May 5, 1998).
  6. Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
    [Crossref]
  7. S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 75, 799 (2002).
    [Crossref]
  8. L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.
  9. J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).
  10. M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006).
    [Crossref]
  11. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
    [Crossref] [PubMed]
  12. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).
  13. A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
    [Crossref]
  14. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [Crossref]
  15. Th. Kraetschmer and S. T. Sanders, "Enhancing the spectral coverage of a CW frequency comb using closed-loop control of an intracavity programmable spectral filter," IEEE Photon. Technol. Lett. (to be published).

2006 (3)

Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
[Crossref]

M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).

2003 (1)

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

2002 (1)

S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 75, 799 (2002).
[Crossref]

2000 (1)

D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[Crossref]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Asano, M.

M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006).
[Crossref]

Brehm, M.

Caswell, A. W.

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.

Chantry, G. W.

G. W. Chantry, Long-Wave Optics: Vol. 1. the Science and Technology of Infrared and Near-Millimetre Waves (Academic, 1984), p. 790.

Christy, A. A.

A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).

Dijaili, S. P.

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Francis, D. A.

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).

Gregoriou, V. G.

A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).

Huber, R.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).

Keilmann, F.

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005).
[Crossref] [PubMed]

D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[Crossref]

D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," U.S. patent 5,748,309 (May 5, 1998).

Kraetschmer, Th.

Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
[Crossref]

Th. Kraetschmer and S. T. Sanders, "Enhancing the spectral coverage of a CW frequency comb using closed-loop control of an intracavity programmable spectral filter," IEEE Photon. Technol. Lett. (to be published).

Kranendonk, L. A.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.

Murakowski, J.

D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[Crossref]

Myers, A. N.

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.

Ozaki, Y.

A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).

Ratowsky, R. P.

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Sanders, S. T.

Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
[Crossref]

J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).

S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 75, 799 (2002).
[Crossref]

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).

Th. Kraetschmer and S. T. Sanders, "Enhancing the spectral coverage of a CW frequency comb using closed-loop control of an intracavity programmable spectral filter," IEEE Photon. Technol. Lett. (to be published).

Schliesser, A.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

van der Weide, D. W.

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005).
[Crossref] [PubMed]

D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[Crossref]

D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," U.S. patent 5,748,309 (May 5, 1998).

Verma, A. K.

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Walewski, J. W.

Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
[Crossref]

J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).

Walker, J. D.

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Wojtkowski, M.

Yamashita, S.

M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (2)

S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 75, 799 (2002).
[Crossref]

J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).

IEEE J. Quantum Electron. (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000).
[Crossref]

Opt. Eng. (1)

Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006).
[Crossref]

A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003).
[Crossref]

Other (6)

Th. Kraetschmer and S. T. Sanders, "Enhancing the spectral coverage of a CW frequency comb using closed-loop control of an intracavity programmable spectral filter," IEEE Photon. Technol. Lett. (to be published).

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).

L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.

D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," U.S. patent 5,748,309 (May 5, 1998).

A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).

G. W. Chantry, Long-Wave Optics: Vol. 1. the Science and Technology of Infrared and Near-Millimetre Waves (Academic, 1984), p. 790.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. (a) Sketch of the ring cavity that generates an unequally spaced frequency comb. The beating of this comb is then used to measure the absorption spectrum of hydrogen cyanide ( HCN 13 ) via a FFT of the time-domain signals: reference I 0 and transmitted I recorded with two photoreceivers and an oscilloscope (OSC). Absorption is also spectrally analyzed with an optical spectrum analyzer (OSA). (b) Layout of the grating compressor following.[14] Other abbreviations defined in text.

Fig. 2
Fig. 2

Beating of the frequency comb. (a) Sketch of the output comb consisting of m fringes. The fringes are not equally spaced, because of the high dispersion in the cavity; thus, adjacent fringes interfere at unique frequencies A i . Beating also occurs in higher orders, e.g., the second-order beating frequencies B i . (b) First- and second-order replicas of the optical frequency comb in the RF range.

Fig. 3
Fig. 3

Transmitted I, reference I 0 , and transmittance spectra of hydrogen cyanide. (a) I and I 0 recorded with an OSA in 750 ms . (b) I and I 0 of 97th order via Fourier transformations of CW c-FTS signals measured with photodetectors in 1 ms . (c) Comparison of OSA and CW c-FTS transmittance spectra I I 0 .

Metrics