Abstract

A dispersive grating compressor was included in a fiber ring laser to generate an unequally spaced frequency comb spanning 15491552nm. Beating of nearby modes in the comb naturally assigns unique amplitude modulation frequencies to each spectral component emitted. The source contains no moving parts. The single-mode fiber-coupled output is directed through hydrogen cyanide gas and detected by a photodiode. A Fourier transform of a 1ms record yields a spectrum that agrees with results from a grating spectrometer at 0.06nm resolution. By engineering stable, broadband combs, the technique could result in a universal and simple approach for spectroscopy at almost arbitrary measurement speeds and spectral resolutions limited only by Fourier principles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription