Abstract

We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
  2. S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005).
    [CrossRef]
  3. H. J. De Los Santos, Principles and Applications of NanoMEMS Physics (Springer-Verlag, 2005).
  4. S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
    [CrossRef]
  5. G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
    [CrossRef] [PubMed]
  6. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).
  7. V. M. Petrov, J. Hahn, J. Petter, M. P. Petrov, and T. Tschudi, Opt. Lett. 30, 3138 (2005).
    [CrossRef] [PubMed]
  8. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
    [CrossRef]

2005 (2)

2002 (1)

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

2000 (1)

W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
[CrossRef]

1997 (1)

S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[CrossRef]

1948 (1)

H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

Bressi, G.

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

Carugno, G.

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

Casimir, H. B. G.

H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

Chen, F.

W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
[CrossRef]

De Los Santos, H. J.

H. J. De Los Santos, Principles and Applications of NanoMEMS Physics (Springer-Verlag, 2005).

Hahn, J.

Harris, W.

W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
[CrossRef]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Lamoreaux, S. K.

S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005).
[CrossRef]

S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[CrossRef]

Mohideen, U.

W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
[CrossRef]

Onofrio, R. R.

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

Petrov, M. P.

V. M. Petrov, J. Hahn, J. Petter, M. P. Petrov, and T. Tschudi, Opt. Lett. 30, 3138 (2005).
[CrossRef] [PubMed]

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Petrov, V. M.

Petter, J.

Ruoso, G.

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Tschudi, T.

Opt. Lett. (1)

Phys. Rev. A (1)

W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 0520109 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[CrossRef]

G. Bressi, G. Carugno, R. R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[CrossRef] [PubMed]

Proc. K. Ned. Akad. Wet. (1)

H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

Rep. Prog. Phys. (1)

S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005).
[CrossRef]

Other (2)

H. J. De Los Santos, Principles and Applications of NanoMEMS Physics (Springer-Verlag, 2005).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup: (a) Casimir force measurements, (b) setup calibration using the light pressure. 1, vacuum chamber; 2, piezodriver; 3, laser ( λ = 488 nm ) used as a source of coherent striking light; 4, amplitude modulator; 5, beam-forming system; 6, sync generator; 7, lock-in amplifier; 8, analyzer; A, pellicle (“plane”); B, lens (“sphere”). The short electrical circuit between the plane and sphere is not shown.

Fig. 2
Fig. 2

Experimental and theoretical results of the Casimir force measurements. The dependence of the output signals U Ω and U 2 Ω versus parameter b. A, Z 0 = 300 nm , R = 1 m ; B, Z 0 = 300 nm , R = 0.3 m ; C, Z 0 = 600 nm , R = 1 m ; D, Z 0 = 600 nm , R = 0.3 m . Squares ( U Ω ) and circles ( U 2 Ω ) are experimental points; — theoretical fit for U Ω using Eq. (2); - - - theoretical fit for U Ω using Eq. (3); - ∙ - theoretical fit for U 2 Ω using Eq. (2); - - - - theoretical fit for U 2 Ω using Eq. (3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P c = π 2 c 240 Z 4 ,
P Ω = 4 P c b ( 1 + b 2 4 ) ( 1 b 2 ) 7 2 , P 2 Ω = 5 P c b 2 ( 1 b 2 ) 7 2 ,
P Ω = 2 π P c R Z 0 b S eff ( 1 b 2 ) 5 2 , P 2 Ω = 2 π P c R Z 0 b 2 S eff ( 1 b 2 ) 5 2 .

Metrics