Abstract

We have numerically studied the cascade connection of a nonlinear amplifying loop mirror and a length of birefringent fiber with two linear polarizers. This structure is shown to work as a vector soliton switch under certain conditions. After optimizing each structure separately, we show the improvement of the switching response when the cascade connection is used. It is also demonstrated that this design acts as a good intensity filter for vector soliton pulses.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 53 (1988).
    [CrossRef] [PubMed]
  2. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, J. Opt. Soc. Am. B 17, 366 (2000).
    [CrossRef]
  3. V. K. Mesentsev and S. K. Turitsyn, Opt. Lett. 17, 1497 (1992).
    [CrossRef] [PubMed]
  4. K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]
  5. M. Midrio, J. Lightwave Technol. 9, 517 (1998).
  6. N. J. Smith and N. J. Doran, J. Opt. Soc. Am. B 12, 1117 (1995).
    [CrossRef]
  7. D. A. Pattison, W. Forysiak, P. N. Kean, I. Bennion, and N. J. Doran, Opt. Lett. 20, 362 (1995).
    [CrossRef] [PubMed]
  8. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, Opt. Lett. 15, 752 (1990).
    [CrossRef] [PubMed]
  9. K. Rottwitt, W. Margulis, and J. R. Taylor, Opt. Lett. 20, 1601 (1995).
    [CrossRef] [PubMed]
  10. I. Gabitov, D. D. Holm, and B. P. Luce, J. Opt. Soc. Am. B 14, 1850 (1997).
    [CrossRef]
  11. R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]
  12. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 17, 417 (1992).
    [CrossRef] [PubMed]
  13. M. N. Islam, C. E. Soccolich, J. P. Gordon, and U. C. Paek, Opt. Lett. 15, 21 (1990).
    [CrossRef] [PubMed]
  14. M. Horowitz and Y. Silbergerg, Opt. Lett. 22, 1760 (1997).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Vol. 1.
  16. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, Opt. Lett. 24, 376 (1999).
    [CrossRef]
  17. V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
    [CrossRef]
  18. S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
    [CrossRef]
  19. Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
    [CrossRef]
  20. F. Heismann and M. S. Whalen, Electron. Lett. 27, 377 (1991).
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

M. Midrio, J. Lightwave Technol. 9, 517 (1998).

1997 (3)

1995 (3)

1993 (1)

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

1992 (3)

1991 (1)

F. Heismann and M. S. Whalen, Electron. Lett. 27, 377 (1991).
[CrossRef]

1990 (2)

1988 (1)

1987 (1)

1982 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Vol. 1.

Akhmediev, N. N.

Ashkin, A.

Barad, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Bennion, I.

Bergano, N. S.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Bergman, K.

Blow, K. J.

Botineau, J.

Caroubalos, C.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

Chen, C. J.

Christodoulides, D. N.

Collings, B. C.

Cundiff, S. T.

Doran, N. J.

Evangelides, S. G.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Fermann, M. E.

Forysiak, W.

Gabitov, I.

Gordon, J. P.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

M. N. Islam, C. E. Soccolich, J. P. Gordon, and U. C. Paek, Opt. Lett. 15, 21 (1990).
[CrossRef] [PubMed]

Haberl, F.

Haus, J. W.

Heismann, F.

F. Heismann and M. S. Whalen, Electron. Lett. 27, 377 (1991).
[CrossRef]

Hochreiter, H.

Hofer, M.

Holm, D. D.

Horowitz, M.

Islam, M. N.

Joseph, R. I.

Kalpogiannis, S.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

Kean, P. N.

Knox, W. H.

Kuzin, E. A.

Luce, B. P.

Margulis, W.

Markatos, S.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

Menyuk, C. R.

Mesentsev, V. K.

Midrio, M.

M. Midrio, J. Lightwave Technol. 9, 517 (1998).

Mollenauer, L. F.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Paek, U. C.

Pattison, D. A.

Rottwitt, K.

Sanchez-Mondragon, J.

Shaulov, G.

Silberberg, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Silbergerg, Y.

Smith, N. J.

Soccolich, C. E.

Soto-Crespo, J. M.

Sphicopoulos, Th.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

Stolen, R. H.

Taylor, J. R.

Turitsyn, S. K.

Tzelepis, V.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

Wai, P. K. A.

Whalen, M. S.

F. Heismann and M. S. Whalen, Electron. Lett. 27, 377 (1991).
[CrossRef]

Wood, D.

Electron. Lett. (1)

F. Heismann and M. S. Whalen, Electron. Lett. 27, 377 (1991).
[CrossRef]

J. Lightwave Technol. (3)

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, and C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[CrossRef]

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

M. Midrio, J. Lightwave Technol. 9, 517 (1998).

J. Opt. Soc. Am. B (3)

Opt. Lett. (11)

Phys. Rev. Lett. (1)

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme used for the simulations of the NALM-NPR device. Bir., birefringent.

Fig. 2
Fig. 2

Output energy versus undoped fiber length for a NALM structure at unsaturated gain of 10, 20 and 30 dB . The input vector soliton energy used for simulations is 80 pJ .

Fig. 3
Fig. 3

Output energy versus input energy for different NALM lengths at unsaturated gain of 30 dB . The input energy is also represented as a dashed–dotted line.

Fig. 4
Fig. 4

Transmitted energy as a function of fiber length for a NPR saturable absorber at 22.5 ° and 112.5 ° of input and output linear polarizations, respectively.

Fig. 5
Fig. 5

Output energy as a function of input energy for two NPR saturable absorber lengths.

Fig. 6
Fig. 6

Output energy as a function of input energy for the NALM-NPR structure, considering two input polarizer angles. The inset shows the transmitted energy for an input energy of 80 pJ as a function of the input polarizer angle.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A x z + β 1 x A x t + i β 2 2 2 A x t 2 + α g 2 A x = i γ ( A x 2 + 2 3 A y 2 ) + i γ 3 A x * A y 2 exp ( 2 i Δ β z ) ,
A y z + β 1 y A y t + i β 2 2 2 A y t 2 + α g 2 A y = i γ ( A y 2 + 2 3 A x 2 ) + i γ 3 A y * A x 2 exp ( 2 i Δ β z ) .
g = G 0 exp ( E p E sat ) [ 1 + ( 2 ω Δ ω ) 2 ] 1 ,

Metrics