Abstract

The design and characterization of a photonic crystal (PC) polarization beam splitter (PBS) that operates with an extinction ratio of greater than 15dB for both polarizations are presented. The PBS is fabricated on a silicon-on-insulator (SOI) wafer where the input and output ports consist of 5μm wide ridge waveguides. A large spectral shift is observed in the dispersion plots of the lowest-order even (TE-like) and odd (TM-like) modes due to the SOI confinement. Because of this shift, the TE-like mode is close to a directional gap at the top of the band, and the TM-like mode is in a low-frequency regime where the dispersion surface is almost isotropic. We show that the TE-like mode has very high reflection at the interface between the two PCs, whereas the TM-like mode exhibits a very high transmission.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  2. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
    [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
    [CrossRef]
  4. S. Shi, A. Sharkawy, C. Chen, D. Pustai, and D. Prather, Opt. Lett. 29, 617 (2004).
    [CrossRef] [PubMed]
  5. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
    [CrossRef]
  6. L. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, Opt. Lett. 29, 1620 (2004).
    [CrossRef] [PubMed]
  7. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
    [CrossRef]
  8. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, Opt. Lett. 28, 2384 (2003).
    [CrossRef] [PubMed]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  10. T. Yamashita and C. J. Summers, IEEE J. Sel. Areas Commun. 23, 1341 (2005).
    [CrossRef]

2006 (1)

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

2005 (1)

T. Yamashita and C. J. Summers, IEEE J. Sel. Areas Commun. 23, 1341 (2005).
[CrossRef]

2004 (2)

2003 (1)

2001 (1)

2000 (1)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

1999 (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Cai, J.

Chen, C.

De La Rue, R. M.

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Gallet, J. F.

Jiang, J.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Jugessur, A.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

Kawashima, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Kim, S.

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Krauss, T. F.

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Mazilu, M.

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Nordin, G. P.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Ohtera, Y.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

Park, W.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Prather, D.

Pustai, D.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

Schonbrun, E.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Sharkawy, A.

Sherer, A.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Shi, S.

Summers, C. J.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

T. Yamashita and C. J. Summers, IEEE J. Sel. Areas Commun. 23, 1341 (2005).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

Wu, L.

Yamashita, T.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

T. Yamashita and C. J. Summers, IEEE J. Sel. Areas Commun. 23, 1341 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Sherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Electron. Lett. (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, Electron. Lett. 35, 1271 (1999).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

T. Yamashita and C. J. Summers, IEEE J. Sel. Areas Commun. 23, 1341 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (2)

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, Phys. Rev. B 73, 195117 (2006).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A, Scanning electron micrograph (SEM) of the integrated PC PBS device with input (left) and output (top and right) 5 μ m wide ridge waveguides. B, Higher magnification SEM image of the interface between the two PCs. The first (left) PC has a lattice constant of 353 nm , and the second (right) PC has a lattice constant of 438 nm , and both have the same radius to lattice constant ratio of 0.35. The dark regions in A consist of a 300 nm thick silicon layer, and the bright regions are where the device layer has been etched down to the underlying 1 μ m oxide.

Fig. 2
Fig. 2

(A) and (B) show the first photonic bands and the light line for the first and second PC, respectively. Due to the proximity to the band edge, there is no coupling from the first PC to the second for the TE-like mode, whereas TM-like mode coupling is shown in (C) for 1550 nm light.

Fig. 3
Fig. 3

Images show out-of-plane scattered light collected over the device at 1582 nm . From the scattered intensity it is clear that when illuminated with TM light the transmitted port is bright, and when illuminated with TE light the reflected port is bright. The polarization of the incident light is controlled with a polarization controlling paddle and coupled into the device via a fiber-coupled laser. The device is illuminated by a lamp to show its geometry.

Metrics