Abstract

A new concept of surface plasmon resonance fiber optic sensor is presented. By tuning the plasmon resonance to a wavelength for which the outer medium is absorptive, a significant variation of the spectral transmittance of the device is produced as a function of the concentration of the analyte. With this mechanism, selectivity can be achieved without the need of any functionalization of the surfaces or the use of recognizing elements, which is a very interesting feature for any kind of chemical sensor or biosensor. Doubly deposited uniform-waist tapered fibers are well suited for the development of these new sensors. Multiple surface plasmon resonance, obtainable in those structures, can be used for the development of microspectrometers based on this principle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  2. K. Kurihara and K. Suzuki, Anal. Chem. 74, 696 (2002).
    [CrossRef] [PubMed]
  3. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 39, 3314 (2000).
    [CrossRef]
  4. A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
    [CrossRef]
  5. A. González-Cano, F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, and M. C. Navarrete, Appl. Opt. 44, 519 (2005).
    [CrossRef] [PubMed]
  6. J. Villatoro, D. Monzón-Hernández, and E. Mejía, Appl. Opt. 42, 2278 (2003).
    [CrossRef] [PubMed]
  7. Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
    [CrossRef]
  8. W. Leupacher and A. Penzkofer, Appl. Opt. 23, 1554 (1984).
    [CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (1)

K. Kurihara and K. Suzuki, Anal. Chem. 74, 696 (2002).
[CrossRef] [PubMed]

2000 (2)

A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 39, 3314 (2000).
[CrossRef]

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

1999 (2)

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1984 (1)

Bernabeu, E.

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

Bueno, F. J.

Delrow, J. J.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

Díaz-Herrera, N.

Esteban, Ó.

A. González-Cano, F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, and M. C. Navarrete, Appl. Opt. 44, 519 (2005).
[CrossRef] [PubMed]

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Gershon, P. D.

González-Cano, A.

A. González-Cano, F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, and M. C. Navarrete, Appl. Opt. 44, 519 (2005).
[CrossRef] [PubMed]

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

Hanning, A.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Jorgenson, R. C.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

Kolomenskii, A. A.

Kurihara, K.

K. Kurihara and K. Suzuki, Anal. Chem. 74, 696 (2002).
[CrossRef] [PubMed]

Leupacher, W.

Mejía, E.

Monzón-Hernández, D.

Navarrete, M. C.

A. González-Cano, F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, and M. C. Navarrete, Appl. Opt. 44, 519 (2005).
[CrossRef] [PubMed]

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

Penzkofer, A.

Roeraade, J.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

Schuessler, H. A.

Suzuki, K.

K. Kurihara and K. Suzuki, Anal. Chem. 74, 696 (2002).
[CrossRef] [PubMed]

Villatoro, J.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Anal. Chem. (1)

K. Kurihara and K. Suzuki, Anal. Chem. 74, 696 (2002).
[CrossRef] [PubMed]

Appl. Opt. (4)

Opt. Lasers Eng. (1)

Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, Opt. Lasers Eng. 33, 219 (2000).
[CrossRef]

Sens. Actuators B (2)

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, Sens. Actuators B 54, 25 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Refractive index corresponding to a concentration of 0.01 M of Rhodamine 6G in methanol. (a) and (b) are the real and imaginary parts of the solution, respectively.

Fig. 2
Fig. 2

Effect of the presence of Rhodamine 6G in the plasmon excitation. Solid curve, pure methanol as the outer medium, dashed curve, 0.01 M solution, dotted curve, 0.02 M solution.

Fig. 3
Fig. 3

Effects of the real and imaginary parts of the index shown in Fig. 1 in the transmittance of the device: (a) pure methanol, (b) only the real part, (c) only the imaginary part, (d) both parts.

Metrics