Abstract

A novel method for generating ultrawideband (UWB) monocycle pulses based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. Thanks to the XGM in the SOA, a pair of polarity-reversed optical Gaussian pulses is generated at the output of the SOA, to which a Gaussian pulse pump and a continuous-wave probe are applied. The two polarity-reversed optical pulses are then time delayed by two cascaded fiber Bragg gratings to introduce a time delay difference. A UWB monocycle pulse with a full width at half-maximum of 48ps and a fractional bandwidth of 188% is generated at the output of a high-speed photodetector.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
    [CrossRef]
  3. M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).
    [CrossRef]
  4. J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
    [CrossRef]
  5. J. Han and C. Nguyen, IEEE Microw. Wirel. Compon. Lett. 12, 206 (2002).
    [CrossRef]
  6. W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
    [CrossRef]
  7. Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004) (IEEE, 2004), paper VI-129.
  8. T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE International Topical Meeting on Microwave Photonics—Technical Digest, MWP'04, (IEEE, 2004), p. 48.
  9. W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005).
    [CrossRef]
  10. F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
    [CrossRef]
  11. F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber Bragg grating based frequency discriminator," IEEE Photon. Technol. Lett. (to be published).

2006 (1)

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

2005 (2)

W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005).
[CrossRef]

2003 (2)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

2002 (1)

J. Han and C. Nguyen, IEEE Microw. Wirel. Compon. Lett. 12, 206 (2002).
[CrossRef]

2001 (1)

J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

August, N. J.

W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005).
[CrossRef]

Chung, W. C.

W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
[CrossRef]

Ghavami, M.

M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).
[CrossRef]

Ha, D. S.

W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
[CrossRef]

Han, J.

J. Han and C. Nguyen, IEEE Microw. Wirel. Compon. Lett. 12, 206 (2002).
[CrossRef]

Hirt, W.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE International Topical Meeting on Microwave Photonics—Technical Digest, MWP'04, (IEEE, 2004), p. 48.

Jeong, Y.

Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004) (IEEE, 2004), paper VI-129.

Jung, S.

Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004) (IEEE, 2004), paper VI-129.

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE International Topical Meeting on Microwave Photonics—Technical Digest, MWP'04, (IEEE, 2004), p. 48.

Kohno, R.

M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).
[CrossRef]

Lee, J. S.

J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
[CrossRef]

Lin, W. P.

W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005).
[CrossRef]

Liu, J.

Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004) (IEEE, 2004), paper VI-129.

Michael, L. B.

M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).
[CrossRef]

Nguyen, C.

J. Han and C. Nguyen, IEEE Microw. Wirel. Compon. Lett. 12, 206 (2002).
[CrossRef]

J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
[CrossRef]

Porcine, D.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE International Topical Meeting on Microwave Photonics—Technical Digest, MWP'04, (IEEE, 2004), p. 48.

Scullion, T.

J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
[CrossRef]

Yao, J. P.

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber Bragg grating based frequency discriminator," IEEE Photon. Technol. Lett. (to be published).

Zeng, F.

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber Bragg grating based frequency discriminator," IEEE Photon. Technol. Lett. (to be published).

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

J. Han and C. Nguyen, IEEE Microw. Wirel. Compon. Lett. 12, 206 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. P. Lin and J. Y. Chen, IEEE Photon. Technol. Lett. 17, 2418 (2005).
[CrossRef]

F. Zeng and J. P. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. S. Lee, C. Nguyen, and T. Scullion, IEEE Trans. Microwave Theory Tech. 49, 1126 (2001).
[CrossRef]

IEEE Wirel. Commun. (1)

W. C. Chung, N. J. August, and D. S. Ha, IEEE Wirel. Commun. 12, 46 (2005).
[CrossRef]

Other (4)

Y. Jeong, S. Jung, and J. Liu, in IEEE International Symposium on Circuits and Systems (ISCAS 2004) (IEEE, 2004), paper VI-129.

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE International Topical Meeting on Microwave Photonics—Technical Digest, MWP'04, (IEEE, 2004), p. 48.

M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber Bragg grating based frequency discriminator," IEEE Photon. Technol. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of the proposed monocycle generation system. Optical power of (a) the input pump and probe and (b) the pair of polarity-reversed pulses at the output of the SOA. (c) Monocycle generated by introducing a time delay difference between the two polarity-reversed pulses.

Fig. 2
Fig. 2

Experimental setup for UWB monocycle generation. PC, polarization controller; AMP, amplifier.

Fig. 3
Fig. 3

(a) Electrical Gaussian pulse from the bit-error-rate tester. (b) Transmission and reflection spectra of the two cascaded FBGs.

Fig. 4
Fig. 4

Generated monocycle pulse: (a) waveform, (b) spectrum

Metrics