Abstract

A method, which we named surface plasmon interferometric microscopy, for real-time displaying of the dynamic evolution of the refractive index (RI) of a sample in three-dimensions is demonstrated experimentally. The Fourier fringe analysis technique is employed to get the phase variations of the samples by demodulating the interference patterns captured by a CCD camera, and the 3D RI distribution can be obtained through numerical interpolation from the relation between the phase and the RI of the samples. Our method may provide an interesting way to monitor fast dynamics of physical, biological, and chemical processes in real time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  2. H. Morgan and D. M. Taylor, Appl. Phys. Lett. 64, 1330 (1994).
    [CrossRef]
  3. G. P. Wang, T. Sigura, and S. Kawata, Appl. Opt. 40, 3649 (2001).
    [CrossRef]
  4. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
    [CrossRef]
  5. S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
    [CrossRef]
  6. H. P. Ho and W. W. Lamb, Sens. Actuators B 96, 554 (2003).
    [CrossRef]
  7. X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
    [CrossRef]
  8. Q. Lu and G. P. Wang, Opto-Electron. Eng. 29, 32 (2002).
  9. A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
    [CrossRef]
  10. R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
    [CrossRef] [PubMed]
  11. E. Kretschmann, Opt. Commun. 6, 185 (1972).
    [CrossRef]
  12. S. Kostianovski, S. G. Lipson, and E. N. Ribak, Appl. Opt. 32, 4744 (1993).
    [CrossRef] [PubMed]
  13. B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
    [CrossRef]
  14. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).
    [CrossRef]

2004

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

2003

H. P. Ho and W. W. Lamb, Sens. Actuators B 96, 554 (2003).
[CrossRef]

X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
[CrossRef]

2002

Q. Lu and G. P. Wang, Opto-Electron. Eng. 29, 32 (2002).

2001

2000

A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
[CrossRef]

1999

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1996

S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
[CrossRef]

1994

H. Morgan and D. M. Taylor, Appl. Phys. Lett. 64, 1330 (1994).
[CrossRef]

1993

1988

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

1972

E. Kretschmann, Opt. Commun. 6, 185 (1972).
[CrossRef]

1935

D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
[CrossRef]

Ho, H. P.

H. P. Ho and W. W. Lamb, Sens. Actuators B 96, 554 (2003).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
[CrossRef]

Kabashin, A. V.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
[CrossRef]

Kawata, S.

Knoll, W.

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Kostianovski, S.

Kretschmann, E.

E. Kretschmann, Opt. Commun. 6, 185 (1972).
[CrossRef]

Lamb, W. W.

H. P. Ho and W. W. Lamb, Sens. Actuators B 96, 554 (2003).
[CrossRef]

Lipson, S. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
[CrossRef]

S. Kostianovski, S. G. Lipson, and E. N. Ribak, Appl. Opt. 32, 4744 (1993).
[CrossRef] [PubMed]

Lu, Q.

Q. Lu and G. P. Wang, Opto-Electron. Eng. 29, 32 (2002).

Manera, M. G.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Mita, G.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Morgan, H.

H. Morgan and D. M. Taylor, Appl. Phys. Lett. 64, 1330 (1994).
[CrossRef]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
[CrossRef]

Notcovich, A. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
[CrossRef]

Rella, R.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Ribak, E. N.

Rothenhausler, B.

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Santino, A.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Siciliano, P.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Sigura, T.

Spadavecchia, J.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Taylor, D. M.

H. Morgan and D. M. Taylor, Appl. Phys. Lett. 64, 1330 (1994).
[CrossRef]

Wang, D. X.

X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
[CrossRef]

Wang, G. P.

Q. Lu and G. P. Wang, Opto-Electron. Eng. 29, 32 (2002).

G. P. Wang, T. Sigura, and S. Kawata, Appl. Opt. 40, 3649 (2001).
[CrossRef]

Yan, Z. B.

X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
[CrossRef]

Yu, X. L.

X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
[CrossRef]

Zhuk, V.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
[CrossRef]

Ann. Phys.

D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Morgan and D. M. Taylor, Appl. Phys. Lett. 64, 1330 (1994).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, Appl. Phys. Lett. 75, 3917 (1999).
[CrossRef]

A. G. Notcovich, V. Zhuk, and S. G. Lipson, Appl. Phys. Lett. 76, 1665 (2000).
[CrossRef]

Biosens. Bioelectron.

R. Rella, J. Spadavecchia, M. G. Manera, P. Siciliano, A. Santino, and G. Mita, Biosens. Bioelectron. 20, 1140 (2004).
[CrossRef] [PubMed]

Nature

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Opt. Commun.

E. Kretschmann, Opt. Commun. 6, 185 (1972).
[CrossRef]

Opto-Electron. Eng.

Q. Lu and G. P. Wang, Opto-Electron. Eng. 29, 32 (2002).

Sens. Actuators B

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, Sens. Actuators B 35-36, 187 (1996).
[CrossRef]

H. P. Ho and W. W. Lamb, Sens. Actuators B 96, 554 (2003).
[CrossRef]

X. L. Yu, D. X. Wang, and Z. B. Yan, Sens. Actuators B 91, 285 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical setup of SPIM. 1, He Ne laser; 2 and 10, mirrors; 3, polarizer; 4, tunable lens group (consisted of an objective lens and a collimating lens) for beam expanding and collimation; 5 and 11, beam splitters; 6, prism; 7, silver film; 8, sample; 9, buffer layer; 12, CCD camera.

Fig. 2
Fig. 2

a, Interference pattern produced by a glue array on the surface of silver film as the incident angle of light to silver film is at 37.60 ° . b, Calculated dependence of Φ and R of the reflected beam on the thickness ( d 3 ) of glue. Solid curve, R; dashed curve, Φ. c, Reconstructed 3D thickness distribution of the glue array. Inset, 2D counterpart. d, Intensity image of the glue array from common SPR microscopy.

Fig. 3
Fig. 3

a, Interference pattern produced by the diffusion of alcohol in the deionized water as the incident angle of light to silver film is at 55.70 ° . b, Calculated dependence of Φ and R of the reflected beam on the RI of mixed liquid ( n 3 ) . Solid curve, R; dashed curve, Φ. c, Series of reconstructed 3D images of the effective RI of the mixed liquid near the surface ( x y plane) of silver film. (d) Evolution of the effective RI with the diffusion time. Solid curve, measured result; dashed curve, fitting result.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = a 0 ( x , y ) + a r ( x , y ) 2 = a 0 ( x , y ) 2 + a r ( x , y ) 2 + a 0 ( x , y ) a r * ( x , y ) + a 0 * ( x , y ) a r ( x , y ) ,
F [ I ( x , y ) ] = A 0 ( f x , f y ) + A 1 ( f x , f y f 0 ) + A 2 ( f x , f y + f 0 ) ,
a 0 ( x , y ) = F 1 [ A 1 ( f x , f y ) ] .
a 0 ( x , y ) = r ( λ , n 3 , d 3 , x , y ) exp [ j Φ ( λ , n 3 , d 3 , x , y ) ] ,

Metrics