Abstract

For the first time to our knowledge, a radially polarized beam is generated in an Yb-doped multimode double-clad fiber laser by using an intracavity dual conical prism. Up to 6.2mW of output power is obtained from a 2m long gain fiber with 7.4% slope efficiency. This research opens a new window to obtaining a radially polarized beam directly from an active fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  2. K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  3. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [CrossRef]
  4. Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002).
    [CrossRef] [PubMed]
  5. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  6. G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
    [CrossRef]
  7. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
    [CrossRef]
  8. Z. 'e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  9. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  10. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  11. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  12. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]
  13. A. A. Tovar, J. Opt. Soc. Am. A 15, 2705 (1998).
    [CrossRef]
  14. Y. Kozawa and S. Sato, Opt. Lett. 30, 3063 (2005).
    [CrossRef] [PubMed]
  15. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  16. A. L. Jones, J. Opt. Soc. Am. 55, 261 (1965).
    [CrossRef]

2005 (1)

2004 (1)

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (3)

K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

1999 (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

1998 (1)

1996 (1)

1990 (1)

1972 (1)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

1965 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Ashkin, A.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

Biener, G.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z. 'e.

Brown, T.

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Hasman, E.

Z. 'e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Jones, A. L.

Kimura, W. D.

Kleiner, V.

Kozawa, Y.

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Petrov, D.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Sato, S.

Schadt, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Stalder, M.

Tidwell, S. C.

Tovar, A. A.

Volpe, G.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Youngworth, K.

Zhan, Q.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Opt. Commun. (2)

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for generating a PRB in a MM Yb fiber laser.

Fig. 2
Fig. 2

Schematic configuration of DCP for light transmission.

Fig. 3
Fig. 3

Output power as a function of P abs at various L YDF .

Fig. 4
Fig. 4

Measured total intensity distributions of annular beam at L YDF = 2 m and P abs = 236 mW for, a, near-field profile; b, far-field profile; c, far-field profile with an L-shaped aperture oriented at 40 50 ° relative to the vertical axis of the beam profile. A and B are two points selected randomly.

Fig. 5
Fig. 5

Measured far-field intensity distribution of laser beam after passage through a LP at L YDF = 2 m and P abs = 236 mW . Each arrow indicates the orientation angle θ of the LP for, a, θ = 0 ° ; b, θ = 45 ° ; c, θ = 90 ° ; d, θ = 135 ° ; e, θ = 180 ° .

Fig. 6
Fig. 6

Intensity evolutions of points A and B as a function of the LP’s orientation angle θ at L YDF = 2 m and P abs = 236 mW .

Fig. 7
Fig. 7

PER of the transmitted light through an off-axis hole at the 5 mm radius trajectory of the annular laser beam as a function of the hole’s azimuthal position. Here L YDF = 2 m and P abs = 236 mW .

Metrics