Abstract

We demonstrate room-temperature slow light that is electrically and optically controllable by using a quantum-dot (QD) semiconductor optical amplifier (SOA) at zero and low bias below the transparency current. The absorption spectrum of the QD SOA exhibits a spectral dip with a corresponding group-index dispersion and group delay owing to coherent population oscillation caused by the interaction of pump and probe laser light near resonance of the first heavy-hole–conduction-state transition. At an optical pump power of 0.3mW inside the single-mode waveguide without current injection, a group-index change of 3.0 with a bandwidth of 2GHz was measured. This group-index change can be controlled by injection of electrical current and by changing the optical pump power.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
    [CrossRef]
  2. H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
    [CrossRef] [PubMed]
  3. M. O. Scully and M. S. Zubairy, Science 301, 181 (2003).
    [CrossRef] [PubMed]
  4. A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
    [CrossRef] [PubMed]
  6. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
    [CrossRef] [PubMed]
  7. S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
    [CrossRef]
  8. D. Derickson, Fiber Optics Test and Measurement (Prentice-Hall, 1998).

2004

H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

2003

M. O. Scully and M. S. Zubairy, Science 301, 181 (2003).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

2002

A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Chang, S. W.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

Chang-Hasnain, C. J.

Chang-Hasnian, C. J.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

Chuang, S. L.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optics Test and Measurement (Prentice-Hall, 1998).

Hakuta, K.

A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[CrossRef]

Hernandez, G.

H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Kang, H. S.

H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
[CrossRef]

Ku, P. C.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Li, T.

Liang, J. Q.

A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[CrossRef]

Palinginis, P.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

Patnaik, A. K.

A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Science 301, 181 (2003).
[CrossRef] [PubMed]

Sedgwick, F.

Wang, H. L.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
[CrossRef] [PubMed]

Zhu, Y. F.

H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Science 301, 181 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

A. K. Patnaik, J. Q. Liang, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[CrossRef]

Phys. Rev. B

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, Phys. Rev. B 70, 235333 (2004).
[CrossRef]

Phys. Rev. Lett.

H. S. Kang, G. Hernandez, and Y. F. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Proc. IEEE

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
[CrossRef]

Science

M. O. Scully and M. S. Zubairy, Science 301, 181 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Other

D. Derickson, Fiber Optics Test and Measurement (Prentice-Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the measurement of gain and group-index dispersion by the phase-shift technique: I1, optical isolator; PCs, optical polarization controllers; Lenses, free-space coupling lenses; C1, C2, optical circulators; NA, network analyzer. The pump is a commercial distributed-feedback laser with a lasing wavelength of 1291.33 nm and an output of 6.3 mW at a 60 mA current injection at 25 ° C . The probe is a tunable laser source.

Fig. 2
Fig. 2

Transmission (on a logarithmic scale) and phase delay of the 1 GHz modulated optical probe signal. The optical pump inside the QD SOA is 0.3 mW . No current is injected into the QD SOA.

Fig. 3
Fig. 3

(a) Spectra of the RF phase delay (or the change in group index) as a function of the detuning between pump and probe frequencies at three bias currents: 0, 15, and 30 mA . (b) Peak group-index change plotted as a function of the current injection into the QD SOA. The optical pump is fixed at 0.3 mW (inside the device).

Fig. 4
Fig. 4

Peak group-index change in the QD SOA under zero current injection versus optical pump power at the entrance facet inside the device.

Metrics