Abstract

We show that a low-finesse cavity can be efficient for detecting neutral atoms. The low finesse can be compensated for by decreasing the mode waist of the cavity. We have used a near-concentric resonator with a beam waist of 12μm and a finesse of only 1100 to detect magnetically guided Rb atoms with a detection sensitivity of 0.1 atom in the mode volume. For future experiments on single-atom detection and cavity QED applications, it should be beneficial to use miniaturized optical resonators integrated on atom chips.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  2. D. P. D. Vincenzo, Fortschr. Phys. 48, 771 (2000).
    [CrossRef]
  3. H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
    [CrossRef]
  4. P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
    [CrossRef] [PubMed]
  5. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
    [CrossRef]
  6. E. M. Purcell, Phys. Rev. 69, 681 (1946).
    [CrossRef]
  7. A. E. Siegman, Lasers (University Science Books, 1986).
  8. A. Haase, "Single atom detection in low finesse cavities," Ph.D dissertation (Universität Heidelberg, 2005).
  9. J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
    [CrossRef]
  10. A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
    [CrossRef]
  11. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  12. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).
  13. X. Liu, K. H. Brenner, M. Wilzbach, M. Schwarz, T. Fernholz, and J. Schmiedmayer, Appl. Opt. 44, 6857 (2005).
    [CrossRef] [PubMed]
  14. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  15. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
    [CrossRef]
  16. Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
    [CrossRef]

2005 (1)

2004 (2)

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

2003 (2)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

2002 (1)

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

2001 (1)

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

2000 (2)

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

D. P. D. Vincenzo, Fortschr. Phys. 48, 771 (2000).
[CrossRef]

1999 (2)

H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
[CrossRef]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

1983 (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1946 (1)

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Bagnall, D. M.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Barclay, P.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Berman, P.

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

Brenner, K. H.

Cassettari, D.

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

Denschlag, J.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

Domokos, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Drever, R.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fernholz, T.

Fischer, T.

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

Folman, R.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

Ford, G.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Haase, A.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

A. Haase, "Single atom detection in low finesse cavities," Ph.D dissertation (Universität Heidelberg, 2005).

Hall, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Henkel, C.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

Hessmo, B.

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

Hinds, E. A.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Horak, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Hough, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Jones, M.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Kimble, H.

H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Klappauf, B. G.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Koukharenka, E.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Kowalski, F.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kraft, M.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Krüger, P.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

Lev, B.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Liu, X.

Mabuchi, H.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
[CrossRef]

Maunz, P.

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

Moktadir, Z.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Munley, A.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Painter, O.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Pinkse, P.

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

Powell, H.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Purcell, E. M.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Rempe, G.

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

Schmiedmayer, J.

X. Liu, K. H. Brenner, M. Wilzbach, M. Schwarz, T. Fernholz, and J. Schmiedmayer, Appl. Opt. 44, 6857 (2005).
[CrossRef] [PubMed]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

Schwarz, M.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Vahala, K.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Vincenzo, D. P. D.

D. P. D. Vincenzo, Fortschr. Phys. 48, 771 (2000).
[CrossRef]

Ward, H.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wilzbach, M.

Ye, J.

H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
[CrossRef]

Adv. At., Mol., Opt. Phys. (1)

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At., Mol., Opt. Phys. 48, 263 (2002).

Appl. Opt. (1)

Appl. Phys. B (2)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

H. Mabuchi, J. Ye, and H. Kimble, Appl. Phys. B 68, 1095 (1999).
[CrossRef]

Fortschr. Phys. (1)

D. P. D. Vincenzo, Fortschr. Phys. 48, 771 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, J. Micromech. Microeng. 14, 82 (2004).
[CrossRef]

Nanotechnology (1)

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, Nanotechnology 15, S556 (2004).
[CrossRef]

Nature (2)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

P. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
[CrossRef] [PubMed]

Phys. Rev. (1)

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A (2)

A. Haase, D. Cassettari, B. Hessmo, and J. Schmiedmayer, Phys. Rev. A 64, 043305 (2001).
[CrossRef]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science Books, 1986).

A. Haase, "Single atom detection in low finesse cavities," Ph.D dissertation (Universität Heidelberg, 2005).

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic drawing of the experimental chamber, which contains a MOT, the quasi-concentric cavity, and a magnetic wire guide. (b) Picture of the cavity mounting including the guiding wire.

Fig. 2
Fig. 2

(a) The finesse of the cavity decreases as the concentric point is approached. The curve is calculated from the cavity geometry and mirror specifications. (b) Schematic of the cavity. Two mirrors with 10 mm radii of curvature are mounted on piezoelectric actuators for alignment. One of the mirrors can be tilted to keep the optical axis of the cavity fixed. The other mirror can be translated for frequency tuning. Atoms can be magnetically guided through the cavity.

Fig. 3
Fig. 3

(a) Cavity transmission signal for atoms dropped from a MOT. Curves correspond to cavity pump powers from 1 to 60 pW . The signal has been averaged over 2.5 ms for better visualization. (b) Relative drop of the signal that is due to the atoms in (a). Circles (squares), measurements with a PMT [a photodiode (PD)] for several light intensities. The solid curve was calculated numerically.

Fig. 4
Fig. 4

Cavity transmission signal from atoms being magnetically guided through the cavity mode. The position of the potential minimum is linearly dependent on the wire current.

Tables (1)

Tables Icon

Table 1 Cooperativity Parameters and Signal-to-Noise Ratios for Near-Concentric Cavities a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C 1 = F 2 π σ atom A ,
S = j in τ κ T κ C 1 ,
N eff = N d 3 r ρ ( r ) ψ ( r ) 2 .

Metrics