Abstract

We have achieved rapid nonlinear vibrational imaging free of nonresonant background with heterodyne coherent anti-Stokes Raman scattering (CARS) interferometric microscopy. This technique completely separates the real and imaginary responses of nonlinear susceptibility χ(3) and yields a signal that is linear in the concentration of vibrational modes. We show that heterodyne CARS microscopy permits the detection of weak vibrational resonances that are otherwise overshadowed by the strong interference of the nonresonant background.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  2. X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
    [CrossRef] [PubMed]
  3. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
    [CrossRef]
  4. J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
    [CrossRef]
  5. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
    [CrossRef]
  6. R. W. Hellwarth, in Progress in Quantum Electronics, J.H.Sanders and S.Stenholm, eds. (Pergamon, 1977), pp. 1-68.
  7. C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
    [CrossRef]

2004

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
[CrossRef]

2003

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

2002

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

2001

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Cheng, J. X.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

Evans, C. L.

Hellwarth, R. W.

R. W. Hellwarth, in Progress in Quantum Electronics, J.H.Sanders and S.Stenholm, eds. (Pergamon, 1977), pp. 1-68.

Nan, X. L.

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

Potma, E. O.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Xie, X. S.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
[CrossRef]

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Appl. Phys. Lett.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. Lipid Res.

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Opt. Lett.

Other

R. W. Hellwarth, in Progress in Quantum Electronics, J.H.Sanders and S.Stenholm, eds. (Pergamon, 1977), pp. 1-68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the heterodyne CARS imaging microscope. The output of a Mach–Zehnder interferometer is coupled to a commercial laser scanning microscope (Olympus FV 300). DM1, DM2, dichroic mirrors; LP, long wave pass filter; CBS, cubic beam splitter; L1, L2, objective lenses (0.66 NA, Leica Achro 40×); LO, local oscillator material (d-DMSO); PM, phase modulator (New Focus 4003); det, photomultiplier tube (Hamamatsu R3896).

Fig. 2
Fig. 2

Dependence of the heterodyne signal on the local oscillator’s amplitude and scatterer concentration. Top, amplification of the heterodyne CARS signal from a glass coverslip as a function of the local oscillator’s strength (filled circles). Amplification is defined as the ratio of the heterodyne CARS signal to the noninterferometric CARS signal. Solid line, linear fit to slope 1.0. Bottom, heterodyne CARS signal as a function of the concentration of dodecane in deuterated dodecane. The signal was measured at 2845 cm 1 (filled circles). Solid line, linear fit to slope 1.02.

Fig. 3
Fig. 3

Comparison of heterodyne CARS with noninterferometric CARS imaging of live NIH 3T3 cells. The noninterferometric image of the cell in (a) was taken at the peak of the symmetric C H 2 vibration ( 2845 cm 1 ) ; the measured imaginary and real responses are given in (b) and (c), respectively. The noninterferometric image of the cell in (d) was taken on the blue side of the CH-stretching band at 2950 cm 1 ; the isolated imaginary and real responses are shown in (e) and (f), respectively. (g), (h), (i) Noninterferometric and imaginary and real response images, respectively, off resonance at 2086 cm 1 . Image dimensions are 35 μ m × 40 μ m .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = E LO 2 + E as 2 + 2 E LO E E X { [ χ N R ( 3 ) + Re χ R ( 3 ) ] cos Φ + [ Im χ R ( 3 ) ] sin Φ } ,

Metrics