Abstract

Dramatic spectral narrowing of two normally broadband lasers, Ti:sapphire and Cr:LiSAF, was achieved by simply replacing the output mirror with a reflective, volumetric Bragg grating recorded in photothermal refractive glass. The output power of each laser was unchanged from that obtained using dielectric coated output mirrors with the same output coupling as the Bragg grating while spectral brightness increased by 3 orders of magnitude.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts, and Applications (Springer, 1997).
  2. F. J. Duarte, Tunable Laser Optics (Elsevier, 2003).
  3. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).
  4. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
    [CrossRef]
  5. O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).
  6. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,673,497 B2 (January 6, 2004).
  7. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
    [CrossRef]
  8. B. Volodin, S. Dolgy, E Melnik, E. Downs, J. Shaw, and V. Ban, Opt. Lett. 29, 1891 (2004).
    [CrossRef] [PubMed]
  9. M. G. Littman and H. J. Metcalf, Appl. Opt. 17, 2224 (1978).
    [CrossRef] [PubMed]
  10. G. J. Kintz and T. Baer, IEEE J. Quantum Electron. 26, 1457 (1990).
    [CrossRef]
  11. L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

2005 (1)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

2004 (1)

2002 (1)

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

1990 (1)

G. J. Kintz and T. Baer, IEEE J. Quantum Electron. 26, 1457 (1990).
[CrossRef]

1978 (1)

Baer, T.

G. J. Kintz and T. Baer, IEEE J. Quantum Electron. 26, 1457 (1990).
[CrossRef]

Ban, V.

Ciapurin, I. V.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

Dolgy, S.

Downs, E.

Duarte, F. J.

F. J. Duarte, Tunable Laser Optics (Elsevier, 2003).

Dubinskii, M.

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,673,497 B2 (January 6, 2004).

Glebov, L. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,673,497 B2 (January 6, 2004).

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Glebova, L. N.

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts, and Applications (Springer, 1997).

Kintz, G. J.

G. J. Kintz and T. Baer, IEEE J. Quantum Electron. 26, 1457 (1990).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).

Littman, M. G.

Melnik, E

Merkle, L. D.

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Metcalf, H. J.

Papernov, S.

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Schmid, A. W.

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Sevian, A.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

Shaw, J.

Smirnov, V. I.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,673,497 B2 (January 6, 2004).

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Stickley, C. M.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

Volodin, B.

Weber, H.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts, and Applications (Springer, 1997).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

G. J. Kintz and T. Baer, IEEE J. Quantum Electron. 26, 1457 (1990).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, in Proc. SPIE , 5711166 (2005).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, in Proc. SPIE 4724101 (2002).
[CrossRef]

Other (6)

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, "Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,586,141 B1 (July 1, 2003).

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High efficiency volume diffractive elements in photo-thermo-refractive glass," U. S. patent 6,673,497 B2 (January 6, 2004).

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts, and Applications (Springer, 1997).

F. J. Duarte, Tunable Laser Optics (Elsevier, 2003).

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, in Proceedings of Solid State and Diode Lasers Technical Review, Albuquerque (2004), p. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ti:sapphire laser with a PTR volume Bragg grating as an output coupler. The Bragg mirror provides feedback to the resonator, while the Fresnel reflections from the surfaces of the mirror that did not have antireflection coatings removed power from the resonator.

Fig. 2
Fig. 2

Ti:sapphire laser output spectra measured with the high resolution spectrometer (Ocean Optics HR2000 with resolution 0.12 nm). Black curve, emission at 853.35 nm detected using the PTR Bragg grating output coupler at any pump power used; dashed curve spectrum obtained using an 95 % reflectivity dielectric coated mirror with 10.5 W pump power; gray curve, spectrum obtained using an 95 % reflectivity dielectric coated mirror with 16.4 W pump power.

Fig. 3
Fig. 3

Emission spectra of the Ti:sapphire laser detected by a Fabry–Perot interferometer. (a) Interference pattern of the laser with the PTR Bragg grating as the output coupler. (b) Spectra of the output of the laser with the PTR Bragg grating output coupler and the dielectric output coupler, with an intracavity birefringent tuner, ——PTR Bragg grating output coupler; _ _ _ _ dielectric mirror output coupler with an intracavity birefringent tuner.

Fig. 4
Fig. 4

Laser output power versus incident pump power for the Ti:sapphire laser with different output couplers. ——PTR Bragg mirror; _ _ _ _ dielectric coated mirror R = 0.948 ; .... dielectric coated mirror R = 0.853 ; —.—. dielectric coated mirror R = 0.853 and a birefringent plate.

Fig. 5
Fig. 5

Emission spectra of Cr:LiSAF laser with different output couplers measured with a high-resolution spectro meter (Ocean Optics HR2000 with resolution 0.12 nm ). Thin solid curve, PTR Bragg grating; dark solid curve, dielectric coated mirror, TEM 00 mode oscillation; gray solid curve, dielectric coated mirror, multimode oscillation.

Metrics