Abstract

We summarize a novel integrated wavelength-stabilization scheme for broad stripe surface-emitting lasers. The method is based on two gratings fabricated on opposite sides of a device in which the first grating disperses light through the substrate to the opposite side, where the second surface has a feedback grating that operates under total internal reflection and in the Littrow condition to provide feedback into the gain medium. Experimental results have been obtained for both high power and a narrow linewidth, showing a CW slope of 0.85WA.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Kluwer Academic, 1993), Chap. 7.
  2. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 3.
  3. L. Vaissié, W. Mohammed, and E. G. Johnson, Opt. Lett. 28, 651 (2003).
    [CrossRef] [PubMed]
  4. L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
    [CrossRef]
  5. J. K. O'Daniel, E. G. Johnson, O. V. Smolski, "Wavelength locked laser including integrated wavelength selecting total internal reflection (TIR) structure," U.S. patent pending (April 12, 2005).
  6. J. R. Marciante and D. H. Raguin, Opt. Lett. 20, 542 (2004).
    [CrossRef]
  7. K. E. Spalding and G. M. Morris, Appl. Opt. 30, 1096 (1991).
    [CrossRef]
  8. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993), Chap. 17.
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  10. E. Silberstein, P. Lalanne, J. Hugonin, and Q. Cao, J. Opt. Soc. Am. A 18, 2865 (2001).
    [CrossRef]
  11. M. G. Moharam and A. B. Greenwell, in Proc. SPIE 5456, 57 (2004).
    [CrossRef]

2005

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

2004

J. R. Marciante and D. H. Raguin, Opt. Lett. 20, 542 (2004).
[CrossRef]

M. G. Moharam and A. B. Greenwell, in Proc. SPIE 5456, 57 (2004).
[CrossRef]

2003

2001

1995

1991

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Kluwer Academic, 1993), Chap. 7.

Cao, Q.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 3.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 3.

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Kluwer Academic, 1993), Chap. 7.

Gaylord, T. K.

Grann, E. B.

Greenwell, A. B.

M. G. Moharam and A. B. Greenwell, in Proc. SPIE 5456, 57 (2004).
[CrossRef]

Hugonin, J.

Johnson, E. G.

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

L. Vaissié, W. Mohammed, and E. G. Johnson, Opt. Lett. 28, 651 (2003).
[CrossRef] [PubMed]

J. K. O'Daniel, E. G. Johnson, O. V. Smolski, "Wavelength locked laser including integrated wavelength selecting total internal reflection (TIR) structure," U.S. patent pending (April 12, 2005).

Lalanne, P.

Marciante, J. R.

Mehta, A.

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

Mohammed, W.

Moharam, M. G.

Morris, G. M.

O'Daniel, J. K.

J. K. O'Daniel, E. G. Johnson, O. V. Smolski, "Wavelength locked laser including integrated wavelength selecting total internal reflection (TIR) structure," U.S. patent pending (April 12, 2005).

Pedrotti, F. L.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993), Chap. 17.

Pedrotti, L. S.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993), Chap. 17.

Pommet, D. A.

Raguin, D. H.

Silberstein, E.

Smolski, O. V.

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

J. K. O'Daniel, E. G. Johnson, O. V. Smolski, "Wavelength locked laser including integrated wavelength selecting total internal reflection (TIR) structure," U.S. patent pending (April 12, 2005).

Spalding, K. E.

Vaissie, L.

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

Vaissié, L.

Appl. Opt.

IEEE Photon. Technol. Lett.

L. Vaissie, O. V. Smolski, A. Mehta, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 732 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Proc. SPIE

M. G. Moharam and A. B. Greenwell, in Proc. SPIE 5456, 57 (2004).
[CrossRef]

Other

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993), Chap. 17.

J. K. O'Daniel, E. G. Johnson, O. V. Smolski, "Wavelength locked laser including integrated wavelength selecting total internal reflection (TIR) structure," U.S. patent pending (April 12, 2005).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Kluwer Academic, 1993), Chap. 7.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of fabricated device incorporating a DGR and a 270 nm outcoupling grating with a HR coating providing output. (b) Image of the fabricated device in operation mounted p-side down upon a submount. AR, antireflection.

Fig. 2
Fig. 2

Optical output power versus injection current under CW conditions for devices with 410 nm (solid curve) and 405 nm (dashed curve) periodicity feedback gratings.

Fig. 3
Fig. 3

Normalized power spectral densities of the device’s outputs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ SW d gc = n eff + n s sin θ ,
λ SW d fb = 2 n s sin θ ,
λ SW = 2 d gc d fb 2 d fb d gc n eff .
λ SW 2 n eff < d gc < λ SW n c + n eff ,
Δ d DBR Δ λ DBR 2 n eff .

Metrics