Abstract

We present three-dimensional fluorescence yield tomography of a tissue phantom in a noncontact reflectance imaging setup. The method employs planar illumination with modulated light and frequency domain fluorescence measurements made on the illumination plane. An adaptive finite-element algorithm is used to handle the ill-posed and computationally demanding inverse image reconstruction problem. Tomographic images of fluorescent targets buried at 1-2 cm depths from the illumination surface demonstrate the feasibility of fluorescence tomography from reflectance tomography in clinically relevant tissue volumes.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription