Abstract

We present theoretical calculations, based on a random phasor sum model, which show that the optical coherence tomography speckle contrast ratio is dependent on the local density of scattering particles in a sample, provided that the effective number of scatterers in the probed volume is less than about five. We confirm these theoretical predictions experimentally, using suspensions of microspheres in water. The observed contrast ratios vary in value from the Rayleigh limit of 0.52 to in excess of 2, suggesting that the contrast ratio could be useful in optical coherence tomography, particularly when imaging in ultrahigh-resolution regimes.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription