Abstract

We measured the wavefront aberrations of the eyes of five subjects with a Shack–Hartmann sensor sampling at 21.2Hz and decomposed the measurements into Zernike aberration terms up to and including the fifth radial order. Coherence function analysis was used to determine the common frequency components between the aberrations within subjects. We found the results to be highly subject dependent. The coherence values were typically <0.4. Possible reasons for this are discussed. Coherence function analysis is a useful tool that can be used in future investigations to determine correlations between the aberration dynamics of the eye and other physiological mechanisms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
    [CrossRef]
  2. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and J. C. Dainty, Opt. Express 11, 2597 (2003).
    [CrossRef] [PubMed]
  3. T. Nirmaier, G. Pudasaini, and J. Bille, Opt. Express 11, 2704 (2003).
    [CrossRef] [PubMed]
  4. M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
    [CrossRef] [PubMed]
  5. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, J. Opt. Soc. Am. A 22, 497 (2005).
    [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, Opt. Express 8, 631 (2001).
    [CrossRef] [PubMed]
  7. A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
    [CrossRef] [PubMed]
  8. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).
  9. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).
  10. P. D. Welch, IEEE Trans. Audio Electroacoust. AU-15, 70 (1967).
    [CrossRef]
  11. S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004).
    [CrossRef]

2005 (1)

2004 (2)

M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
[CrossRef] [PubMed]

S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004).
[CrossRef]

2003 (2)

2002 (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

2001 (2)

1995 (1)

A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
[CrossRef] [PubMed]

1967 (1)

P. D. Welch, IEEE Trans. Audio Electroacoust. AU-15, 70 (1967).
[CrossRef]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

Aragon, J. L.

Artal, P.

Bendat, J. S.

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).

Bille, J.

Chen, L.

Collins, M. J.

M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
[CrossRef] [PubMed]

Dainty, C.

Dainty, J. C.

Diaz-Santana, L.

Eadie, A. S.

A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
[CrossRef] [PubMed]

Gasson, P.

Hampson, K. M.

Hofer, H.

Iskander, D. R.

M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
[CrossRef] [PubMed]

Munro, I.

Nirmaier, T.

Paterson, C.

Piersol, A. G.

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).

Pudasaini, G.

Pugh, J. R.

A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
[CrossRef] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

Singer, B.

Tang, M. X.

S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004).
[CrossRef]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

Torti, C.

Wang, S. Y.

S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004).
[CrossRef]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

Welch, P. D.

P. D. Welch, IEEE Trans. Audio Electroacoust. AU-15, 70 (1967).
[CrossRef]

Williams, D. R.

Winn, B.

A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
[CrossRef] [PubMed]

Yamauchi, Y.

Yoon, G. Y.

Zhu, M.

M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
[CrossRef] [PubMed]

IEEE Signal Process. Lett. (1)

S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004).
[CrossRef]

IEEE Trans. Audio Electroacoust. (1)

P. D. Welch, IEEE Trans. Audio Electroacoust. AU-15, 70 (1967).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).

Ophthalmic Physiol. Opt. (2)

M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004).
[CrossRef] [PubMed]

A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995).
[CrossRef] [PubMed]

Opt. Express (3)

Other (1)

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(Color online). Experimental setup: PM, plane mirror; CM, cold mirror; BS, beam splitter; L, lens (focal length is in millimeters); A, aperture.

Fig. 2
Fig. 2

Coherence function results for one subject.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ x y 2 ( f ) = G x y ( f ) 2 G x x ( f ) G y y ( f ) ,
G x y = 2 N F s X * ( f , T ) Y ( f , T ) ,
G x x = 2 N F s X ( f , T ) 2 ,

Metrics