Abstract

We propose a novel technique based on negative impulse modulation for pulse repetition rate multiplication by rational harmonic mode locking with pulse-amplitude-equalized pulses directly from the laser cavity. We have generated a pulse train of 15GHz with more than 16dB suppression of unwanted amplitude modulation spurs by using a 1GHz RF signal. This is the highest suppression ratio for a repetition rate multiplication factor of 15 to our knowledge.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
    [CrossRef]
  2. R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
    [CrossRef]
  3. N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
    [CrossRef]
  4. C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
    [CrossRef]
  5. Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
    [CrossRef]
  6. Y. J. Kim, C. G. Lee, Y. Y. Chun, and C. Park, Opt. Express 12, 907 (2004).
    [CrossRef] [PubMed]

2004

2001

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

2000

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

1999

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

1993

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

Ahmed, Z.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Chan, K. T.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

Chun, Y. Y.

Dutta, N. K.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Gao, Y.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

Kim, Y. J.

Lee, C. G.

Li, Y.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

Li, Z.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

Lou, C.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

Lowery, A. J.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Onodera, N.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Park, C.

Tucker, R. S.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Walden, R. H.

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Zhai, L.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

Appl. Phys. Lett.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1330 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, IEEE J. Quantum Electron. 37, 33 (2001).
[CrossRef]

IEEE J. Sel. Areas Commun.

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

Opt. Express

Other

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Frequency-domain picture of rational harmonic mode locking. The solid lines denote the harmonics of the cavity fundamental frequency, and the dotted lines denote the harmonics of the modulation frequency.

Fig. 2
Fig. 2

Time-domain picture of conventional rational harmonic mode locking. After each round trip the pulse will be shifted to a new location with respect to the modulation window, resulting in pulse-amplitude fluctuations.

Fig. 3
Fig. 3

(a) Proposed modulation waveform–negative impulse modulation. (b) Frequency detuning results in the multiplication of the pulse train with pulse-amplitude equalization since the modulation is flat with respect to time.

Fig. 4
Fig. 4

Setup of the ring laser used in the experiment. SOA, fiberized semiconductor optical amplifier; Iso., isolator; P.C., polarization controller; A.M., amplitude modulator; C.G., comb generator; B.A., broadband RF amplifier; Synth., synthesizer; D.C., bias voltage supply.

Fig. 5
Fig. 5

(a), (b) Modulated amplified after the first round trip at 1 GHz and its RF spectrum. (c), (d) Generated 5 GHz pulse train and its RF spectrum. (e), (f) Generated 10 GHz pulse train and corresponding RF spectrum. (g), (h) Generated 15 GHz pulse train and its RF spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f mod = n f c ± f c m ,
τ mod = m τ c n τ mod ,

Metrics