Abstract

Heterodyned two-dimensional (2D) IR spectra often suffer from inaccurate pulse delays and phase drift. We report a passive method of correcting these two inaccuracies by using wedged optics for subfemtosecond pulse delay resolution and reference measurements for phase corrections. Our approach is easy to implement into existing 2D IR spectrometers and makes experiments requiring long-term phase stability possible, such as the collection of 3D IR spectra.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Park and M. H. Cho, J. Chem. Phys. 112, 5021 (2000).
    [CrossRef]
  2. C. Scheurer and S. Mukamel, J. Chem. Phys. 116, 6803 (2002).
    [CrossRef]
  3. P. Hamm, J. Chem. Phys. 124, 124506 (2006).
    [CrossRef] [PubMed]
  4. E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
    [CrossRef]
  5. E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
    [CrossRef] [PubMed]
  6. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
    [CrossRef] [PubMed]
  7. V. Volkov, R. Schanz, and P. Hamm, Opt. Lett. 30, 2010 (2005).
    [CrossRef] [PubMed]
  8. J. J. Loparo, S. T. Roberts, and A. Tokmakoff, "Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in 2D IR lineshapes" (submitted to J. Chem. Phys.).
  9. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
    [CrossRef] [PubMed]
  10. The indices of refraction of ZnSe at 632.8nm and 1983cm−1(5043nm) are 2.5911 and 2.4293, respectively.
  11. At 5μm, a 2ps pulse delay broadens a 100fs pulse by <10−3fs, and the phase changes <10−2rad across the pulse spectrum. For any wavelength between 4 and 7μm, the pulse broadens <1fs and rotates <1rad for a 2ps delay.

2006

P. Hamm, J. Chem. Phys. 124, 124506 (2006).
[CrossRef] [PubMed]

2005

E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
[CrossRef]

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

V. Volkov, R. Schanz, and P. Hamm, Opt. Lett. 30, 2010 (2005).
[CrossRef] [PubMed]

2004

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

2002

C. Scheurer and S. Mukamel, J. Chem. Phys. 116, 6803 (2002).
[CrossRef]

2000

K. Park and M. H. Cho, J. Chem. Phys. 112, 5021 (2000).
[CrossRef]

Brixner, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Cho, M. H.

K. Park and M. H. Cho, J. Chem. Phys. 112, 5021 (2000).
[CrossRef]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Ding, F.

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
[CrossRef]

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Fleming, G. R.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Fulmer, E.

E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
[CrossRef]

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

Hamm, P.

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Loparo, J. J.

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, "Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in 2D IR lineshapes" (submitted to J. Chem. Phys.).

Mancal, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Mukamel, S.

C. Scheurer and S. Mukamel, J. Chem. Phys. 116, 6803 (2002).
[CrossRef]

Mukherjee, P.

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

Nibbering, E. T. J.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Park, K.

K. Park and M. H. Cho, J. Chem. Phys. 112, 5021 (2000).
[CrossRef]

Roberts, S. T.

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, "Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in 2D IR lineshapes" (submitted to J. Chem. Phys.).

Schanz, R.

Scheurer, C.

C. Scheurer and S. Mukamel, J. Chem. Phys. 116, 6803 (2002).
[CrossRef]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Tokmakoff, A.

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, "Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in 2D IR lineshapes" (submitted to J. Chem. Phys.).

Volkov, V.

Zanni, M.

E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
[CrossRef]

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

J. Chem. Phys.

K. Park and M. H. Cho, J. Chem. Phys. 112, 5021 (2000).
[CrossRef]

C. Scheurer and S. Mukamel, J. Chem. Phys. 116, 6803 (2002).
[CrossRef]

P. Hamm, J. Chem. Phys. 124, 124506 (2006).
[CrossRef] [PubMed]

E. Fulmer, F. Ding, and M. Zanni, J. Chem. Phys. 122, 034302 (2005).
[CrossRef]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Nature

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

E. Fulmer, F. Ding, P. Mukherjee, and M. Zanni, Phys. Rev. Lett. 94, 067402 (2005).
[CrossRef] [PubMed]

Other

J. J. Loparo, S. T. Roberts, and A. Tokmakoff, "Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in 2D IR lineshapes" (submitted to J. Chem. Phys.).

The indices of refraction of ZnSe at 632.8nm and 1983cm−1(5043nm) are 2.5911 and 2.4293, respectively.

At 5μm, a 2ps pulse delay broadens a 100fs pulse by <10−3fs, and the phase changes <10−2rad across the pulse spectrum. For any wavelength between 4 and 7μm, the pulse broadens <1fs and rotates <1rad for a 2ps delay.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fourier transforms of two He Ne interferograms collected with a Michelson interferometer. The solid curve is obtained by using the ZnSe wedges, and the dashed curve is measured with a retroreflecting translation stage.

Fig. 2
Fig. 2

(a) First, 150th, and 300th 1D scan of the fifth-order signal before correction of the phase and amplitude. (b) Signal after phase correction. (c) Relative phase change θ n plotted versus time t. (d) Fifth-order pulse sequence used in our measurements with wave vectors k n and relative time delays t n .

Fig. 3
Fig. 3

(a) Single fifth-order 2D IR absolute value spectrum. (b) Slices through the real part of the 10th, 20th, and 40th spectra at ω 2 = 3952 cm 1 before phase correction. (c) Slices after correction.

Fig. 4
Fig. 4

3D IR spectra of W ( CO ) 6 (a) before and (b) after phase correction. Surfaces are drawn at 30% of maximum intensity values. 2D IR contour plots of cuts of ω 2 = 3952 cm 1 for (c) uncorrected and (d) corrected spectra.

Metrics