Abstract

Aerosols are important parameters in the meteorological and environmental fields, and remote aerosol identification is extremely desirable. We have proposed and designed a two-wavelength (355 and 532nm) rotational Raman and elastic lidar that can measure the wavelength dependence of the aerosol backscattering coefficient without any assumptions about the Ångström coefficient or the overlapping function from low (100m) to high (10km) altitude, depending on the weather conditions. We have measured the differences in the backscattering ratios (BRs) among a cloud, aerosol in the boundary layer, and Asian dust. The ratio of the aerosol backscattering coefficients between two wavelengths is a fingerprint of an aerosol, which is similar to the Ångström coefficient. The BR value for a typical aerosol ranged from 0.56 to 0.4 in the boundary layer and from 0.5 to 0.1 for Asian dust. The BR value of water droplet was not unique but was spread over a wide range because of its size distributions.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low and optically thin cloud measurements using a Raman-Mie lidar

Yonghua Wu, Shuki Chaw, Barry Gross, Fred Moshary, and Sam Ahmed
Appl. Opt. 48(6) 1218-1227 (2009)

Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba

Tetsu Sakai, Tomohiro Nagai, Masahisa Nakazato, Yuzo Mano, and Takatsugu Matsumura
Appl. Opt. 42(36) 7103-7116 (2003)

Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia

Boyan Tatarov, Detlef Müller, Dong Ho Shin, Sung Kyun Shin, Ina Mattis, Patric Seifert, Young Min Noh, Y. J. Kim, and Nobuo Sugimoto
Opt. Express 19(2) 1569-1581 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription