Abstract

A space-variant optical transmission filter is demonstrated for which a simplified process is used to tailor the spatial response of the filter across the surface of a single wafer. A multilayer stack, of alternating high or low refractive index dielectric materials, was used to produce a narrow transmission notch in the center of a wide stop band. Subsequent patterning and etching of arrays of holes through the volume of the dielectric stack was performed to control the fill factor of the dielectric in the layers. The position of the transmission notch within the reflection spectrum was varied across the device surface by adjusting the hole diameter of the hole arrays. Experimental and numerical simulation were used to confirm the space-variant transmission characteristics of a single-wafer sample with two zones of different hole diameter arrays in the 1550nm wavelength regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Filloux and N. Paraire, J. Opt. A, Pure Appl. Opt. 4, S175 (2002).
    [CrossRef]
  2. W. Nakagawa, P. C. Sun, C. Chen, and Y. Fainman, Opt. Lett. 27, 191 (2002).
    [CrossRef]
  3. L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
    [CrossRef]
  4. M. G. Moharam, E. B. Grann, and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]

2002

P. Filloux and N. Paraire, J. Opt. A, Pure Appl. Opt. 4, S175 (2002).
[CrossRef]

W. Nakagawa, P. C. Sun, C. Chen, and Y. Fainman, Opt. Lett. 27, 191 (2002).
[CrossRef]

1995

1984

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Chen, C.

Craighead, H. G.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Epworth, R. W.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Fainman, Y.

Filloux, P.

P. Filloux and N. Paraire, J. Opt. A, Pure Appl. Opt. 4, S175 (2002).
[CrossRef]

Grann, E. B.

Howard, R. E.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Jackel, L. D.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Mankiewich, P. M.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

Moharam, M. G.

Nakagawa, W.

Paraire, N.

P. Filloux and N. Paraire, J. Opt. A, Pure Appl. Opt. 4, S175 (2002).
[CrossRef]

Pommet, D. A.

Sun, P. C.

Appl. Phys. Lett.

L. D. Jackel, R. E. Howard, P. M. Mankiewich, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

P. Filloux and N. Paraire, J. Opt. A, Pure Appl. Opt. 4, S175 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Device concept for space-variant optical transmission filter.

Fig. 2
Fig. 2

(a) Basic geometry of space-variant optical transmission filter. (b) Scanning electron microscope image of surfaces of space-variant optical transmission filters with 367 and 440 nm hole diameters.

Fig. 3
Fig. 3

Tuning concept: the position of transmission peak is adjusted by controlling the diameter of the holes.

Fig. 4
Fig. 4

Experimental data for filters with two different hole diameters.

Metrics