Abstract

The generation of a high-power laser pulse at 266nm that is longitudinally shaped according to a prefixed intensity profile is reported. The main features of the pulse shape modifications due to second- and third-harmonic conversions are measured, and the results are in good agreement with the theory. The UV temporal shape depends on the chirp of the fundamental pulse and on the crystal phase-matching angle. Exploiting the large stretching imposed on the third-harmonic signal, we show that the pulse intensity profile can be obtained by spectral single-shot measurements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
    [CrossRef]
  2. L. Palumbo and J. Rosenzweig, eds., Technical Design Report for the SPARC Advanced Photo-Injector (Laboratori Nazionali Frascati, Istituto Nazionale di Fisica Nucleare, 2004).
  3. P. R. Bolton and J. E. Clendenin, Nucl. Instrum. Methods Phys. Res. A 483, 296 (2002).
    [CrossRef]
  4. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, J. Opt. Soc. Am. B 17, 138 (2000).
    [CrossRef]
  5. C. Vicario, M. Petrarca, and A. Ghigo, in Proceedings of EPAC 2004 (2004), p. 1300 http://www.jacow.org.
  6. S. Cialdi and I. Boscolo, Nucl. Instrum. Methods Phys. Res. A 538, 1 (2005).
    [CrossRef]
  7. S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
    [CrossRef]
  8. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  9. E. Sidick, A. Knoesen, and A. Dienes, J. Opt. Soc. Am. B 12, 1704 (1995).
    [CrossRef]
  10. M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

2006

S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
[CrossRef]

2005

S. Cialdi and I. Boscolo, Nucl. Instrum. Methods Phys. Res. A 538, 1 (2005).
[CrossRef]

2002

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

P. R. Bolton and J. E. Clendenin, Nucl. Instrum. Methods Phys. Res. A 483, 296 (2002).
[CrossRef]

2000

1995

Bolton, P. R.

P. R. Bolton and J. E. Clendenin, Nucl. Instrum. Methods Phys. Res. A 483, 296 (2002).
[CrossRef]

Boscolo, I.

S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
[CrossRef]

S. Cialdi and I. Boscolo, Nucl. Instrum. Methods Phys. Res. A 538, 1 (2005).
[CrossRef]

Castelli, F.

S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
[CrossRef]

Cialdi, S.

S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
[CrossRef]

S. Cialdi and I. Boscolo, Nucl. Instrum. Methods Phys. Res. A 538, 1 (2005).
[CrossRef]

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Clendenin, J. E.

P. R. Bolton and J. E. Clendenin, Nucl. Instrum. Methods Phys. Res. A 483, 296 (2002).
[CrossRef]

Dienes, A.

Endo, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Gatti, G.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Ghigo, A.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

C. Vicario, M. Petrarca, and A. Ghigo, in Proceedings of EPAC 2004 (2004), p. 1300 http://www.jacow.org.

Huignard, J. P.

Knoesen, A.

Laude, V.

Mattioli, M.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Migus, A.

Musumeci, P.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Okada, Y.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Palumbo, L.

L. Palumbo and J. Rosenzweig, eds., Technical Design Report for the SPARC Advanced Photo-Injector (Laboratori Nazionali Frascati, Istituto Nazionale di Fisica Nucleare, 2004).

Petrarca, M.

C. Vicario, M. Petrarca, and A. Ghigo, in Proceedings of EPAC 2004 (2004), p. 1300 http://www.jacow.org.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Rosenzweig, J.

L. Palumbo and J. Rosenzweig, eds., Technical Design Report for the SPARC Advanced Photo-Injector (Laboratori Nazionali Frascati, Istituto Nazionale di Fisica Nucleare, 2004).

Sakai, F.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Sidick, E.

Takasago, K.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Tournois, P.

Verluise, F.

Vicario, C.

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

C. Vicario, M. Petrarca, and A. Ghigo, in Proceedings of EPAC 2004 (2004), p. 1300 http://www.jacow.org.

Washio, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yada, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yanagida, T.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yang, J.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Yorozu, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Appl. Phys. B

S. Cialdi, I. Boscolo, and F. Castelli, Appl. Phys. B 3, 383 (2006).
[CrossRef]

J. Appl. Phys.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nucl. Instrum. Methods Phys. Res. A

P. R. Bolton and J. E. Clendenin, Nucl. Instrum. Methods Phys. Res. A 483, 296 (2002).
[CrossRef]

S. Cialdi and I. Boscolo, Nucl. Instrum. Methods Phys. Res. A 538, 1 (2005).
[CrossRef]

Other

C. Vicario, M. Petrarca, and A. Ghigo, in Proceedings of EPAC 2004 (2004), p. 1300 http://www.jacow.org.

L. Palumbo and J. Rosenzweig, eds., Technical Design Report for the SPARC Advanced Photo-Injector (Laboratori Nazionali Frascati, Istituto Nazionale di Fisica Nucleare, 2004).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

M. Petrarca, C. Vicario, S. Cialdi, P. Musumeci, G. Gatti, A. Ghigo, and M. Mattioli, Rep. INFN-SPARC/LS-06/002 (INFM-SPARC, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

From left to right: measured (solid curve) and simulated (dashed curve) IR, BLUE, and UV spectra. Starting from a transform-limited pulse, we increase the chirp by 0.01 ps 2 for each curve from top to bottom.

Fig. 2
Fig. 2

SH simulated (solid curve) and measured (dashed curve) spectrum changes versus the tilt of the crystal from its phase-matching angle. The tilt from top to bottom is 5.8, 2.9, 0, 2.9 , and 5.8 mrad .

Fig. 3
Fig. 3

Comparison between the UV spectrum (solid curve) and the temporal profile (dashed curve) after the UV stretcher in two cases.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A 3 z + 1 V g 3 A 3 t = i γ A 1 A 2 exp ( i Δ k z ) ,
A ̃ 3 z = i γ [ ( A ̃ 1 e i β 31 z ω ) ( A ̃ 2 e i β 32 z ω ) ] exp ( i Δ k z ) ,
A ̃ 3 z = i γ [ A ̃ 1 A ̃ 1 ] exp ( i β z ω ) .
A ̃ 1 A ̃ 1 ( ω ) = S ( ω Ω ) S ( Ω ) exp { i [ ϕ ( ω Ω ) + ϕ ( Ω ) ] } d Ω .
A ̃ 1 A ̃ 1 ( ω ) S 2 ( ω 2 ) exp [ 2 i ϕ ( ω 2 ) ] .
A ̃ 3 z = i γ [ A ̃ 1 A ̃ 1 ] exp [ i β ( ω + χ β θ ) z ] .
I ̃ 3 sinc 2 [ β ( ω + χ β θ ) d ] d 2 [ A ̃ 1 A ̃ 1 ] 2 .
I ( t ) = A ̃ ( ω ) exp [ i ( a ω 2 2 ω t ) ] d ω 2 I ̃ ( ω = t a ) ,

Metrics