Abstract

We report a semiconductor-based, low-noise, 10.24GHz actively mode-locked laser with 4.65fs of relative timing jitter and a 0.0365% amplitude fluctuation (1Hzto100MHz) of the optical pulse train. The keys to obtaining this result were the laser’s high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.
  2. P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
    [CrossRef]
  3. H. F. Taylor, IEEE J. Quantum Electron. 15, 210 (1979).
    [CrossRef]
  4. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. Ippen, and H. Yokoyama, Opt. Lett. 28, 813 (2003).
    [CrossRef] [PubMed]
  5. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, Opt. Lett. 30, 2742 (2005).
    [CrossRef] [PubMed]
  6. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
    [CrossRef]
  7. D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
    [CrossRef]
  8. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  9. D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
    [CrossRef]
  10. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1997).
  11. D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
    [CrossRef]
  12. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
    [CrossRef]
  13. N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
    [CrossRef]
  14. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, Opt. Express 14, 5346 (2006).
    [CrossRef] [PubMed]
  15. A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

2006 (1)

2005 (2)

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, Opt. Lett. 30, 2742 (2005).
[CrossRef] [PubMed]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

2003 (1)

2001 (1)

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

1999 (1)

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

1992 (1)

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

1990 (1)

D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
[CrossRef]

1989 (1)

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

1986 (2)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
[CrossRef]

1984 (1)

A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

1979 (1)

H. F. Taylor, IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

Betts, G. E.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Bowers, J. E.

D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
[CrossRef]

Burdge, G. L.

D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
[CrossRef]

Carruthers, T. F.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

Chandalia, J.

Clark, T. R.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

Delfyett, P. J.

Derickson, D. J.

D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
[CrossRef]

Duling, I. N.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

Gee, S.

Hargreaves, J. J.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Hjelme, D. R.

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Ho, P.-T.

D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
[CrossRef]

Holman, K. W.

Ippen, E.

Jalali, B.

B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.

Jiang, L. A.

Jones, D. J.

Juodawlkis, P.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Kelkar, P.

B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.

Labaar, F.

A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

Lance, A. L.

A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

Mar, A.

D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
[CrossRef]

Matthews, P. J.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

Mickelson, A. R.

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Notcutt, M.

O'Donnell, F. J.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Olsson, N. A.

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

Ozharar, S.

Quinlan, F.

Ray, K. G.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Rush, D. W.

D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
[CrossRef]

Saxena, V.

B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.

Seal, W. D.

A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

Taylor, H. F.

H. F. Taylor, IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

Twitchell, J. C.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Wasserman, J. L.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Williamson, R. C.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1997).

Ye, J.

Yokoyama, H.

Younger, R. D.

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Appl. Phys. B (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Electron. Lett. (2)

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999).
[CrossRef]

D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986).
[CrossRef]

H. F. Taylor, IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

J. Lightwave Technol. (1)

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser schematic. SOA, semiconductor optical amplifier; PC, polarization controller; IM, intensity modulator; I, isolator; FD, fiber delay.

Fig. 2
Fig. 2

Laser characteristics when optimally tuned. (a) Relative phase noise, noise floor, and integrated timing jitter; (b) amplitude noise, noise floor, and integrated amplitude fluctuation; (c) optical spectrum, logarithm scale; (d) pulse autocorrelation before and after external com pression.

Fig. 3
Fig. 3

Phase noise for different SOA drive currents. (i) 200 mA , (ii) 300 mA . The phase noise power of the first supermode spur of these two curves along with those for gain biases of 150 mA , 400 mA , and 500 mA versus inverse optical power and the best line fit are plotted in the inset.

Fig. 4
Fig. 4

Phase and amplitude noise with the synthesizer as the rf source. (a) Absolute phase noise of the (i) laser, (ii) synthesizer, and (iii) laser–synthesizer relative phase noise are plotted. (b) (i) Amplitude noise of the laser, (ii) amplitude noise of the synthesizer, and (iii) amplitude noise floor are plotted.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ J = 1 2 π f M L 2 L ( f ) d f ,

Metrics