Abstract

Retrieval of Mueller matrices from intensity measurements is a noise-sensitive process. In addition, the choice of the method used for extracting Mueller matrix elements greatly influences the precision of the final results. Among available procedures, three have been tested and their robustness analyzed by adding Gaussian noise to computer synthesized data and have been verified by comparing experimental data. As expected, the methods based on classical matrix inversion reach their noise reduction limit even if more data are considered. In contrast, the discrete Fourier transform approach features a remarkable stability. The identified reason is that the retrieval process corresponds to filtering with a periodic kernel.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  2. R. A. Chipman, Handbook of Optics, 2nd ed., M.Bass, ed. (McGraw-Hill, 1995), Vol. 2.
  3. J. S. Tyo, J. Opt. Soc. Am. A 15, 359 (1998).
    [CrossRef]
  4. E. Compain, S. Poirier, and B. Drévillon, Appl. Opt. 38, 3490 (1999).
    [CrossRef]
  5. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, Opt. Lett. 28, 616 (2003).
    [CrossRef] [PubMed]
  6. A. Ambirajan and D. C. Look, Opt. Eng. 34, 1656 (1995).
    [CrossRef]
  7. D. S. Sabatke, M. R. Descour, E. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, Opt. Lett. 25, 802 (2000).
    [CrossRef]
  8. J. Zallat, C. Collet, and Y. Takakura, Appl. Opt. 43, 283 (2004).
    [CrossRef] [PubMed]
  9. F. Le Roy-Brehonnet and B. Le Jeune, Prog. Quantum Electron. 21, 109 (1997).
    [CrossRef]
  10. D. H. Goldstein, Appl. Opt. 31, 6676 (1992).
    [CrossRef] [PubMed]
  11. R. M. Azzam, Opt. Lett. 2, 148 (1978).
    [CrossRef] [PubMed]
  12. D. H. Goldstein and R. A. Chipman, J. Opt. Soc. Am. A 7, 693 (1990).
    [CrossRef]
  13. B. DeBoo, J. Sasian, and R. Chipman, Opt. Express 12, 4941 (2004).
    [CrossRef] [PubMed]
  14. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, Opt. Lett. 31, 817 (2006).
    [CrossRef] [PubMed]

2006 (1)

2004 (2)

2003 (1)

2000 (1)

1999 (1)

1998 (1)

1997 (1)

F. Le Roy-Brehonnet and B. Le Jeune, Prog. Quantum Electron. 21, 109 (1997).
[CrossRef]

1995 (1)

A. Ambirajan and D. C. Look, Opt. Eng. 34, 1656 (1995).
[CrossRef]

1992 (1)

1990 (1)

1978 (1)

Aiello, A.

Ambirajan, A.

A. Ambirajan and D. C. Look, Opt. Eng. 34, 1656 (1995).
[CrossRef]

Azzam, R. M.

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).

Chipman, R.

Chipman, R. A.

D. H. Goldstein and R. A. Chipman, J. Opt. Soc. Am. A 7, 693 (1990).
[CrossRef]

R. A. Chipman, Handbook of Optics, 2nd ed., M.Bass, ed. (McGraw-Hill, 1995), Vol. 2.

Collet, C.

Compain, E.

De Martino, A.

DeBoo, B.

Dereniak, E.

Descour, M. R.

Drévillon, B.

Garcia-Caurel, E.

Goldstein, D. H.

Kemme, S. A.

Kim, Y. K.

Laude, B.

Le Jeune, B.

F. Le Roy-Brehonnet and B. Le Jeune, Prog. Quantum Electron. 21, 109 (1997).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet and B. Le Jeune, Prog. Quantum Electron. 21, 109 (1997).
[CrossRef]

Look, D. C.

A. Ambirajan and D. C. Look, Opt. Eng. 34, 1656 (1995).
[CrossRef]

Phipps, G. S.

Poirier, S.

Puentes, G.

Sabatke, D. S.

Sasian, J.

Sweatt, W. C.

Takakura, Y.

Tyo, J. S.

Voigt, D.

Woerdman, J. P.

Zallat, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Classical imaging polarimeter. LS, incoherent light source; P H , V , horizontal and vertical linear polarizers; L 1 , 2 , rotating quarter-wave plates; IF, interferential filter.

Fig. 2
Fig. 2

Probability distribution function of experimental noise. Solid curve, Gaussian function; bars, normalized histogram of the noise.

Fig. 3
Fig. 3

Frobenius norm error with respect to the number of measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , θ ) k × l A ( θ ) k × 4 M 4 × 4 G ( θ ) 4 × l .
I ( θ ) = a 0 + n = 1 12 ( a n cos 2 n θ + b n sin 2 n θ ) .
I k = a 0 N δ k + n = 1 12 N 2 a n δ k 2 n i n = 1 12 N 2 b n δ k 2 n ,
p = 0 N 1 w N k p = 0 for k 0
[ 0.999 ( 072 ) 0.000 ( 136 ) 0.000 ( 136 ) 0.000 ( 060 ) 0.000 ( 136 ) 1.000 ( 257 ) 0.000 ( 257 ) 0.000 ( 115 ) 0.000 ( 136 ) 0.000 ( 257 ) 1.000 ( 257 ) 0.000 ( 115 ) 0.000 ( 060 ) 0.000 ( 115 ) 0.000 ( 115 ) 1.000 ( 051 ) ] .
[ 1.000 ( 042 ) 0.000 ( 063 ) 0.000 ( 069 ) 0.000 ( 034 ) 0.000 ( 063 ) 1.000 ( 094 ) 0.000 ( 104 ) 0.000 ( 052 ) 0.000 ( 069 ) 0.000 ( 104 ) 0.999 ( 115 ) 0.000 ( 057 ) 0.000 ( 034 ) 0.000 ( 052 ) 0.000 ( 057 ) 1.000 ( 028 ) ] .
[ 1.000 ( 007 ) 0.000 ( 011 ) 0.000 ( 012 ) 0.000 ( 006 ) 0.000 ( 011 ) 1.000 ( 018 ) 0.000 ( 019 ) 0.000 ( 009 ) 0.000 ( 012 ) 0.000 ( 019 ) 1.000 ( 020 ) 0.000 ( 010 ) 0.000 ( 006 ) 0.000 ( 009 ) 0.000 ( 010 ) 1.000 ( 005 ) ] .

Metrics