Abstract

We show that having a Wolf degree of coherence of unit modulus or having intrinsic degrees of coherence of unit modulus imply different relations between the electric fields of the light. The mean square meaning of such relations is discussed. On the one hand, we demonstrate that if the intrinsic degrees of coherence are equal to 1, then there is a linear relation between the electrical fields. On the other hand, we show that a Wolf degree of coherence of unit modulus corresponds to a stronger property that implies that the fields have to be proportional.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
    [CrossRef]
  3. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  4. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [CrossRef] [PubMed]
  5. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  6. Ph. Réfrégier, Opt. Lett. 30, 3117 (2005).
    [CrossRef] [PubMed]
  7. G. S. Agarwal, A. Dogariu, T. D. Visser, and E. Wolf, Opt. Lett. 30, 120 (2005).
    [CrossRef] [PubMed]
  8. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
    [CrossRef] [PubMed]
  9. Ph. Réfrégier and A. Roueff, Opt. Lett. 31, 1175 (2006).
    [CrossRef] [PubMed]
  10. J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.
  11. L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995) pp. 160-170.

2006 (2)

2005 (3)

2004 (1)

2003 (3)

Agarwal, G. S.

Borghi, R.

Dogariu, A.

Friberg, A. T.

Goodman, J. W.

J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.

Gori, F.

Goudail, F.

Guattari, G.

Mandel, L.

L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995) pp. 160-170.

Piquero, G.

Réfrégier, Ph.

Roueff, A.

Santarsiero, M.

Setälä, T.

Simon, R.

Tervo, J.

Visser, T. D.

Wolf, E.

F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
[CrossRef] [PubMed]

G. S. Agarwal, A. Dogariu, T. D. Visser, and E. Wolf, Opt. Lett. 30, 120 (2005).
[CrossRef] [PubMed]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995) pp. 160-170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Ω ( r 1 , r 2 , t 1 , t 2 ) = E ( r 2 , t 2 ) E ( r 1 , t 1 ) ,
μ W ( r 1 , r 2 , t 1 , t 2 ) = tr [ Ω ( r 1 , r 2 , t 1 , t 2 ) ] tr [ Γ ( r 1 , t 1 ) ] tr [ Γ ( r 2 , t 2 ) ] ,
M ( r 1 , r 2 , t 1 , t 2 ) = Γ 1 2 ( r 2 , t 2 ) Ω ( r 1 , r 2 , t 1 , t 2 ) Γ 1 2 ( r 1 , t 1 ) .
0 μ S ( r 1 , r 2 , t 1 , t 2 ) 1 ,
0 μ I ( r 1 , r 2 , t 1 , t 2 ) 1 .
[ E ( r 2 , t 2 ) J ( r 1 , r 2 , t 1 , t 2 ) E ( r 1 , t 1 ) ] [ E ( r 2 , t 2 ) J ( r 1 , r 2 , t 1 , t 2 ) E ( r 1 , t 1 ) ] = 0 ¯ .
μ W = tr [ B 2 D B 1 ] tr [ B 2 B 2 ] tr [ B 1 B 1 ] .
B i = [ a i b i c i d i ] .
μ W 2 μ S 2 ( a 1 2 α 1 2 + b 1 2 α 1 2 ) + μ I 2 ( c 1 2 α 1 2 + d 1 2 α 1 2 ) .
μ W 2 μ S 2 ( 1 ρ ) + μ I 2 ρ .
B 1 = [ a 1 b 1 0 0 ] .
( E 1 ρ E 2 ) ( E 1 ρ E 2 ) = Γ 1 + ρ 2 Γ 2 ρ Ω ρ * Ω
( E 1 ρ E 2 ) ( E 1 ρ E 2 ) = 0 ¯ ,
[ E 2 J E 1 ] [ E 2 J E 1 ] = E 2 E 2 + J E 1 E 1 J J E 1 E 2 E 2 E 1 J ,
[ E 2 J E 1 ] [ E 2 J E 1 ] = 0 ¯ .

Metrics