Abstract

For the daytime adaptive optics system, a field-of-view shifted Shack–Hartmann wavefront sensor (FSWFS), which is used to measure the aberrant wavefront under daytime conditions, is proposed. Because the field angle of the object signal in adaptive optics systems is much less than that of the sky background, the effective object signal is separated from the strong sky background. Experimental results indicate that FSWFS with a single focal-plane array can precisely and stably measure the aberrant wavefront information with a strong sky background under daytime conditions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).
  2. W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
    [CrossRef]
  3. J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
    [CrossRef]
  4. J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
    [CrossRef]
  5. W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).
  6. J. D. Kraus, Radio Astronomy (McGraw-Hill, 1966).
  7. X. Li and W. Jiang, in Proc. SPIE 4825, 121 (2002).
    [CrossRef]
  8. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

2002 (1)

X. Li and W. Jiang, in Proc. SPIE 4825, 121 (2002).
[CrossRef]

2001 (1)

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

1998 (2)

W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).

W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).

1996 (1)

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

1990 (1)

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

Beckers, J. M.

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Browne, S. L.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Cacciani, A.

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Dayton, D. C.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Gonglewski, J. D.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

Highland, R. G.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Huang, S.

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

Jiang, W.

X. Li and W. Jiang, in Proc. SPIE 4825, 121 (2002).
[CrossRef]

W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).

W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

Kraus, J. D.

J. D. Kraus, Radio Astronomy (McGraw-Hill, 1966).

Li, H.

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

Li, X.

X. Li and W. Jiang, in Proc. SPIE 4825, 121 (2002).
[CrossRef]

Rogers, S. C.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Sandven, S. S.

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

Shen, J. F.

W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).

Wu, X.

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

Xian, H.

W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).

W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).

Yang, Z.

W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).

Chin. J. Quantum Electron. (2)

W. Jiang, H. Xian, and Z. Yang, Chin. J. Quantum Electron. 15, 228 (1998).

W. Jiang, H. Xian, and J. F. Shen, Chin. J. Quantum Electron. 15, 218 (1998).

Exp. Astron. (1)

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Proc. SPIE (3)

J. D. Gonglewski, R. G. Highland, D. C. Dayton, S. S. Sandven, S. C. Rogers, and S. L. Browne, in Proc. SPIE 2827, 152 (1996).
[CrossRef]

W. Jiang, H. Li, S. Huang, and X. Wu, in Proc. SPIE 1271, 82 (1990).
[CrossRef]

X. Li and W. Jiang, in Proc. SPIE 4825, 121 (2002).
[CrossRef]

Other (2)

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

J. D. Kraus, Radio Astronomy (McGraw-Hill, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic schematic of FSWFS.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Mixed signal with effective signal and extended background irradiance, BSR = 56.7 . Effective signal hides in the strong background.

Fig. 4
Fig. 4

Effective object signal extracted by FSWFS, SNR = 12.2 .

Fig. 5
Fig. 5

Relationship between signal’s SNR and BSR under the conditions of different background intensity. Corresponding theory curve is calculated based on Eq. (3).

Fig. 6
Fig. 6

Centroid position fluctuation’s rms error and its corresponding theory curve under the conditions of different background intensity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I CCD 1 I CCD 2 = ( S + B + σ 1 ) ( B + σ 2 ) = S + ( σ 1 σ 2 ) ,
SNR = N s ( N s + 2 N b ) + 2 N r 2 ,
SNR = N s ( N s + 2 N b ) 1 2 = N s 1 2 ( 1 + 2 c L 2 BSR ) 1 2 ,
σ 1 = 3 π λ 16 d 1 SNR ,
σ c = f l σ 1 = 3 π f λ 16 l d N s 1 2 ( 1 + 2 c L 2 BSR ) 1 2 ,

Metrics