Abstract

We present a novel nonlinear imaging method that utilizes femtosecond laser-induced plasma emission to probe microscopic structures embedded inside transparent materials. This nonlinear diagnostic tool can resolve either elemental or structural variations of the sample of interest and provide significant improvements over the ordinary linear microscopes by having much higher contrast ratios for the observed areas of different refractive indices. Examples of using this technique to examine the microstructures fabricated by ultrashort laser pulses inside optical glass are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
    [CrossRef] [PubMed]
  3. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, Opt. Lett. 23, 1209 (1998).
    [CrossRef]
  4. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
    [CrossRef]
  5. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
    [CrossRef]
  6. Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
    [CrossRef]
  7. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, J. Opt. Soc. Am. B 13, 459 (1996).
    [CrossRef]
  8. C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
    [CrossRef]
  9. D. Kossakovski and J. L. Beauchamp, Anal. Chem. 72, 4731 (2000).
    [CrossRef] [PubMed]
  10. A. M. Streltsov and N. F. Borrelli, J. Opt. Soc. Am. B 19, 2496 (2002).
    [CrossRef]
  11. Note that, as a result of the low scanning speed (0.2 mm/s) and long integration time (0.5 s/pixel) of the lock-in amplifier, it takes about 4 h to obtain a picture of 25,600 pixels like the one shown in Fig. with our current experimental setup. It is, however, expected that this image acquisition time can be reduced dramatically to less than 1 min when a high-speed laser scanner and a high repetition rate femtosecond oscillator are employed.
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  13. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, Opt. Lett. 26, 1726 (2001).
    [CrossRef]
  14. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  15. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
    [CrossRef]

2006 (1)

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

2002 (1)

2001 (3)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, Opt. Lett. 26, 1726 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

2000 (1)

D. Kossakovski and J. L. Beauchamp, Anal. Chem. 72, 4731 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (3)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

1996 (3)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

Beauchamp, J. L.

D. Kossakovski and J. L. Beauchamp, Anal. Chem. 72, 4731 (2000).
[CrossRef] [PubMed]

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

Callan, J. P.

Chan, J. W.

Cheng, J. X.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Davis, K. M.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

Feit, M. D.

Finlay, R. J.

Gauderon, R.

Glezer, E. N.

Her, T.-H.

Herman, S.

Hirao, K.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

Huang, L.

Huser, T.

Kossakovski, D.

D. Kossakovski and J. L. Beauchamp, Anal. Chem. 72, 4731 (2000).
[CrossRef] [PubMed]

Krol, D. M.

Lukins, P. B.

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

Milosavljevic, M.

Miura, K.

Perry, M. D.

Risbud, S.

Rubenchik, A. M.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Shore, B. W.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

Streltsov, A. M.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Stuart, B. C.

Sugimoto, N.

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Webb, W. W.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Williams, R. M.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

Xie, X. S.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Yang, J.

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

Zhang, N.

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

Zhao, Y.

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

Zhu, X.

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

Zipfel, W. R.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. Kossakovski and J. L. Beauchamp, Anal. Chem. 72, 4731 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Appl. Phys. Lett. 70, 922 (1997).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

Opt. Lett. (4)

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, Science 275, 530 (1997).
[CrossRef] [PubMed]

Other (1)

Note that, as a result of the low scanning speed (0.2 mm/s) and long integration time (0.5 s/pixel) of the lock-in amplifier, it takes about 4 h to obtain a picture of 25,600 pixels like the one shown in Fig. with our current experimental setup. It is, however, expected that this image acquisition time can be reduced dramatically to less than 1 min when a high-speed laser scanner and a high repetition rate femtosecond oscillator are employed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-section images of a standard single-mode optical fiber. (a) Image obtained by LIBM with 1 μ m scanning steps. (b) Image acquired with a conventional optical microscope (Olympus, BX51) with 500 × magnification and differential interference contrast method.

Fig. 2
Fig. 2

Detected signal strength of laser-induced plasma emission as a function of the peak intensity of the 50 fs laser pulses incident on the two indicated cross-section areas of a standard single-mode optical fiber. Solid lines are linear fits to the experiment data.

Fig. 3
Fig. 3

Images of a micropattern fabricated inside a bulk K9 optical glass with femtosecond pulses. (a) Image obtained by LIBM with 3 μ m scanning steps. (b) Image acquired with a conventional optical microscope (Olympus, BX51) with 250 × magnification.

Fig. 4
Fig. 4

LIBM images of femtosecond laser-induced structural alteration in a bulk K9 optical glass. (a) Scribed lines by repetitive 50 fs laser pulses. From left to right, the pulse energy and the sample moving speed are 750 nJ , 1 mm s ; 750 nJ , 0.1 mm s ; 150 nJ , 1 mm s ; 150 nJ , 0.1 mm J ; 66 nJ , 1 mm s ; and 66 nJ , 0.1 mm s , respectively. (b) Microdots fabricated by multiple 50 fs pulses. From left to right, the pulse energies are 750 nJ , 690 nJ , 440 nJ , 150 nJ , 104 nJ , 93 nJ , and 66 nJ ; from top to bottom, the numbers of pulses are 1, 5, 10, 50, 100, and 1000, respectively. The scanning step in obtaining these images is 2 μ m .

Metrics