Abstract

We present a new instrument, based on a low-frame-rate (8Hz) CCD camera used in a heterodyne optical-mixing configuration, that can create wide-field laser Doppler maps. As an illustration, we show results obtained in a mouse brain, in vivo, showing the Doppler signature of blood flow. The instrument is based on a frequency-shifting digital holography scheme.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
    [CrossRef] [PubMed]
  2. T. Yoshimura, J. Opt. Soc. Am. A 3, 1032 (1986).
    [CrossRef]
  3. Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  4. A. Serov, W. Steenbergen, and F. de Mul, Opt. Lett. 27, 300 (2002).
    [CrossRef]
  5. A. Serov, B. Steinacher, and T. Lasser, Opt. Express 13, 3681 (2005).
    [CrossRef] [PubMed]
  6. A. Serov and T. Lasser, Opt. Express 13, 6416 (2005).
    [CrossRef] [PubMed]
  7. A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
    [CrossRef]
  8. J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
    [CrossRef]
  9. J. D. Briers, Physiol. Meas 22, R35 (2001).
    [CrossRef]
  10. R. Bonner and R. Nossal, Appl. Opt. 20, 2097 (1981).
    [CrossRef] [PubMed]
  11. J. A. Briers, J. Opt. Soc. Am. A 13, 345 (1996).
    [CrossRef]
  12. U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  13. C. Wagner, S. Seebacher, W. Olsten, and W. Juptner, Appl. Opt. 38, 4812 (1999).
    [CrossRef]
  14. U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
    [CrossRef]
  15. F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 25, 716 (2000).
    [CrossRef]
  16. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, Opt. Lett. 30, 1357 (2005).
    [CrossRef] [PubMed]
  17. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
    [CrossRef] [PubMed]
  18. M. Gross, P. Goy, and M. Al-Koussa, Opt. Lett. 28, 2482 (2003).
    [CrossRef] [PubMed]
  19. I. Yamaguchi and T. Zhang, Opt. Lett. 18, 31 (1997).
  20. P. Starukhin, S. Ulyanov, E. Galanzha, and V. Tuchin, Appl. Opt. 39, 2823 (2000).
    [CrossRef]

2005 (4)

2003 (1)

2002 (2)

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

A. Serov, W. Steenbergen, and F. de Mul, Opt. Lett. 27, 300 (2002).
[CrossRef]

2001 (2)

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (2)

C. Wagner, S. Seebacher, W. Olsten, and W. Juptner, Appl. Opt. 38, 4812 (1999).
[CrossRef]

J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

1986 (1)

1981 (2)

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

R. Bonner and R. Nossal, Appl. Opt. 20, 2097 (1981).
[CrossRef] [PubMed]

1964 (1)

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Al-Koussa, M.

Atlan, M.

Boas, D. A.

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

Boccara, A. C.

Bolay, H.

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

Bonner, R.

Briers, J. A.

Briers, J. D.

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
[CrossRef]

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

Collot, L.

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

de Mul, F.

Dunn, A.

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

Dunn, A. K.

Fercher, A. F.

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

Forget, B. C.

Galanzha, E.

Goy, P.

Gross, M.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
[CrossRef]

Juptner, W.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Lasser, T.

LeClerc, F.

Moskowitz, M. A.

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

Nossal, R.

Olsten, W.

Ramaz, F.

Richards, G.

J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
[CrossRef]

Seebacher, S.

Serov, A.

Starukhin, P.

Steenbergen, W.

Steinacher, B.

Tuchin, V.

Ulyanov, S.

Wagner, C.

Yamaguchi, I.

Yeh, Y.

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Yoshimura, T.

Zhang, T.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

J. Biomed. Opt. (1)

J. D. Briers, G. Richards, and X. W. He, J. Biomed. Opt. 4, 164 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

A. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, J. Cereb. Blood Flow Metab. 21, 195 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Physiol. Meas (1)

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical configuration (top, general view; the inset is enlarged in the bottom part). AOMs,1,2, Bragg cells; BS, beam splitter; BE, beam expander. M 1 M 6 , mirrors; E O , object (scattered) field; E LO , reference (LO) field.

Fig. 2
Fig. 2

Power maps of the Δ f = 64 Hz and Δ f = 2240 Hz frequency components of the scattered field (top, log scale) and the perfusion map, i.e., the RMS frequency shift, in hertz (bottom). A mouse cranium (from which the skin and subcutaneous tissue were excised) is observed in retrodiffusion configuration (Fig. 1), in vivo. The image shows a dorsal view of the mouse cranium (anterior on the left, posterior on the right). The superficial dorsal venous system and some of the superficial cerebral arteries are visible (squares labeled 1–3).

Fig. 3
Fig. 3

Spectra calculated in the three 5 × 5 pixel ROI outlined in Fig. 2 (log scale).

Fig. 4
Fig. 4

In vitro measurement of the light scattered by a 5 × 10 3 volume fraction suspension of 1 μ m latex beads flowing through a transparent tube of 580 μ m diameter. The average RMS frequency shift versus average speed of flow is shown.

Metrics