Abstract

We performed multiphoton fluorescence (MF) and second-harmonic generation (SHG) imaging on human basal cell carcinoma samples. In the dermis, basal cell carcinomas can be identified by masses of autofluorescent cells with relatively large nuclei and marked peripheral palisading. In the normal dermis, SHG from dermal collagen contributes largely to the multiphoton signal. However, within the cancer stroma, SHG signals diminish and are replaced by autofluorescent signals, indicating that normal collagen structures responsible for SHG have been altered. To better delineate the cancer cells and cancer stroma from the normal dermis, a quantitative MF to SHG index is developed. We demonstrate that this index can be used to differentiate cancer cells and adjacent cancer stroma from the normal dermis. Our work shows that MF and SHG imaging can be an alternative for Mohs’ surgery in the real-time guidance of the secure removal of basal cell carcinoma.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription