Abstract

We present a numerical study of the tunability properties of a plasmonic subwavelength particle deposited on a metallic slab. The particle is composed of a metallic part, supporting a localized plasmon mode, separated from the slab by a dielectric spacer. It is shown that the position of the resonance wavelength can be modified over a large spectral range by changing either the spacer thickness by a few tens of nanometers or its susceptibility within the range of usual dielectrics. A linear relation is observed between the resonance wavelength and the spacer permittivity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription