Abstract

We experimentally study the propagation of circularly polarized light in the subdiffusion regime by exploiting enhanced backscattering [(EBS), also known as coherent backscattering] of light under low spatial coherence illumination. We demonstrate for the first time, to the best of our knowledge, that a circular polarization memory effect exists in EBS over a large range of scatterers’ sizes in this regime. We show that low-coherence EBS signals from the helicity preserving and orthogonal helicity channels cross over as the mean free path length of light in media varies, and that the cross point indicates the transition from multiple to double scattering in EBS.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
    [CrossRef]
  2. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
    [CrossRef]
  3. A. D. Kim and M. Moscoso, Opt. Lett. 27, 1589 (2002).
    [CrossRef]
  4. M. Xu and R. R. Alfano, Phys. Rev. E 72, 065601(R) (2005).
    [CrossRef]
  5. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, Opt. Lett. 29, 1906 (2004).
    [CrossRef] [PubMed]
  6. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, Appl. Opt. 44, 366 (2005).
    [CrossRef] [PubMed]
  7. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, Opt. Lett. 30, 741 (2005).
    [CrossRef] [PubMed]
  8. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, Opt. Lett. 31, 1459 (2006).
    [CrossRef] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999), pp. 572-580.
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1995).
  11. M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
    [CrossRef]

2006

2005

2004

2002

1994

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

1989

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

1988

M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
[CrossRef]

Alfano, R. R.

M. Xu and R. R. Alfano, Phys. Rev. E 72, 065601(R) (2005).
[CrossRef]

Backman, V.

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999), pp. 572-580.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Kim, A. D.

Kim, M. H.

Kim, Y. L.

Lagendijk, A.

M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
[CrossRef]

Liu, Y.

Mackintosh, F. C.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Moscoso, M.

Pine, D. J.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Pradhan, P.

Roy, H. K.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Subramanian, H.

Turzhitsky, V. M.

van Albada, M. P.

M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1995).

van der Mark, M. B.

M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
[CrossRef]

Wali, R. K.

Weitz, D. A.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999), pp. 572-580.

Xu, M.

M. Xu and R. R. Alfano, Phys. Rev. E 72, 065601(R) (2005).
[CrossRef]

Zhu, J. X.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Appl. Opt.

Opt. Lett.

Phys. Rev. B

M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
[CrossRef]

F. C. Mackintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).
[CrossRef]

Phys. Rev. E

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

M. Xu and R. R. Alfano, Phys. Rev. E 72, 065601(R) (2005).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999), pp. 572-580.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Representative I LEBS ( θ ) with L sc = 110 μ m obtained from the suspensions of microspheres ( a = 0.15 μ m , k a = 2.4 , and g = 0.73 ). We obtained I LEBS ( θ ) for various l s * = 67 to 1056 μ m ( l s = 18 to 285 μ m ) from the (a) ( h h ) and (b) ( h h ) channels. The insets show the enhancement factors E.

Fig. 2
Fig. 2

I LEBS in the backward direction from Fig. 1. (a) I LEBS ( θ = 0 ° ) and I LEBS ( θ = 0 ° ) cross over at l s * = 408 μ m ( l s = 110 μ m ) . The curves are third-degree polynomial fitting. (b) Inset, I LEBS ( θ ) and I LEBS ( θ ) at the cross point. C ( r ) r P ( r ) obtained by calculating the inverse Fourier transform of I LEBS ( θ ) reveals helicity preserving in the ( h h ) channel when r 50 μ m .

Fig. 3
Fig. 3

Dependence of R i on L sc and g in LEBS measurements. (a) Plot of R i (in the units of l s * ) versus L sc for a fixed g = 0.86 ( k a = 4.0 ) . (b) R i (in the units of l s * ) L sc as a function of g. (c) R i is recalculated in the units of l s .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I LEBS ( θ ) = 0 C ( r ) r P ( r ) exp ( i 2 π r θ λ ) d r ,

Metrics