Abstract

We analyze the condition for achieving a temperature-insensitive resonance wavelength of a long-period grating formed in a channel waveguide. We find that by controlling the waveguide cladding thickness, zero temperature sensitivity can be achieved with core and cladding materials that have significantly different thermo-optic coefficients. To verify our finding, we design a polymer long-period waveguide grating (LPWG) according to the zero-sensitivity condition, where the thermo-optic coefficient of the core is twice that of the cladding. The temperature sensitivity of the fabricated grating is within ±0.15nm°C over a temperature range of 15°C, which is more than an order of magnitude lower than those of previously reported LPWGs fabricated with the same materials.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Rastogi and K. S. Chiang, Appl. Opt. 41, 6351 (2002).
    [CrossRef] [PubMed]
  2. Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
    [CrossRef]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  4. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
    [CrossRef]
  5. K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
    [CrossRef]
  6. M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
    [CrossRef]
  7. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
    [CrossRef]
  8. M.-S. Kwon and S.-Y. Shin, IEEE Photon. Technol. Lett. 17, 145 (2005).
    [CrossRef]
  9. M.-S. Kwon and S.-Y. Shin, IEEE J. Sel. Top. Quantum Electron. 11, 190 (2005).
    [CrossRef]
  10. A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
    [CrossRef]
  11. M. N. Ng and K. S. Chiang, Opt. Commun. 208, 321 (2002).
    [CrossRef]

2005 (4)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, IEEE Photon. Technol. Lett. 17, 145 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, IEEE J. Sel. Top. Quantum Electron. 11, 190 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
[CrossRef]

2004 (2)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

2003 (2)

Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

2002 (2)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Bertrand, H.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Chan, H. P.

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Chiang, K. S.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, Appl. Opt. 41, 6351 (2002).
[CrossRef] [PubMed]

M. N. Ng and K. S. Chiang, Opt. Commun. 208, 321 (2002).
[CrossRef]

Chow, C. K.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Christophe, M.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Cyril, G.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Jacquin, O.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
[CrossRef]

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, IEEE J. Sel. Top. Quantum Electron. 11, 190 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, IEEE Photon. Technol. Lett. 17, 145 (2005).
[CrossRef]

Laurent, C.

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Liu, Q.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
[CrossRef]

Lor, K. P.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
[CrossRef]

Ng, M. N.

M. N. Ng and K. S. Chiang, Opt. Commun. 208, 321 (2002).
[CrossRef]

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
[CrossRef]

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, Appl. Opt. 41, 6351 (2002).
[CrossRef] [PubMed]

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, IEEE J. Sel. Top. Quantum Electron. 11, 190 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, IEEE Photon. Technol. Lett. 17, 145 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Electron. Lett. (1)

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, Electron. Lett. 40, 422 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M.-S. Kwon and S.-Y. Shin, IEEE J. Sel. Top. Quantum Electron. 11, 190 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Perentos, G. Kostovski, and A. Mitchell, IEEE Photon. Technol. Lett. 17, 2595 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, IEEE Photon. Technol. Lett. 17, 145 (2005).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, IEEE Photon. Technol. Lett. 15, 1094 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Q. Liu, K. S. Chiang, and V. Rastogi, J. Lightwave Technol. 21, 3399 (2003).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Opt. Commun. (2)

M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, and G. Cyril, Opt. Commun. 233, 97 (2004).
[CrossRef]

M. N. Ng and K. S. Chiang, Opt. Commun. 208, 321 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A long-period grating with pitch Λ formed along the core of a channel waveguide.

Fig. 2
Fig. 2

The cladding thickness d cl required for achieving S T = 0 as a function of C cl C co at different values of (a) α (in ppm ° C ) for w = 3 μ m and (b) w for α = 50 ppm ° C .

Fig. 3
Fig. 3

(a) Normalized transmission spectra (the TE polarization) measured at different temperatures for a LPWG sample with a 5.0 - μ m -thick cladding. (b) Measured resonance wavelength as a function of the temperature.

Fig. 4
Fig. 4

Comparison of the temperature sensitivity of the sample shown in Fig. 3 with the simulation results for different cladding thicknesses.

Fig. 5
Fig. 5

Measured resonance wavelength (the TE polarization) at different temperatures for the sample with a 6.5 μ m thick cladding.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d λ 0 d T γ Λ S T ,
C cl C co = ( η 0 co η m co ) ( η 0 cl η m cl ) [ 1 + α ( N 0 N m ) C co ( η 0 co η m co ) ] .

Metrics