Abstract

We analyzed the feasibility of using a UV imprinting process to integrate a microlens array onto an image sensor. A simulated wafer-scale image sensor chip array was fabricated for the implementation. A microlens array with a side length of 4.63μm, a sag height of 1.416μm, and a residual-layer thickness of 1.15μm was integrated onto the simulated image sensor. The standard deviations of the sag height and the residual-layer thickness were less than 0.038μm and less than 0.164μm, respectively, in whole-wafer-scale samples. The measured beam spot size (FWHM) at the imaging plane was 1.19μm, with a uniform intensity distribution and pitch in the array.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. D. Popovic, R. A. Sprague, and C. G. A. Neville, Appl. Opt. 27, 1281 (1988).
    [CrossRef] [PubMed]
  2. C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).
  3. C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
    [CrossRef]
  4. S. Kim and S. Kang, J. Phys. D 36, 2451 (2003).
    [CrossRef]
  5. J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
    [CrossRef]
  6. H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
    [CrossRef]
  7. S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
    [CrossRef]
  8. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
    [CrossRef]
  9. M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
    [CrossRef]

2006 (2)

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

2005 (2)

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
[CrossRef]

2004 (1)

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

2003 (2)

S. Kim and S. Kang, J. Phys. D 36, 2451 (2003).
[CrossRef]

S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
[CrossRef]

1994 (1)

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

1988 (1)

Busch, C.

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

Chen, S.

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

Gale, M. T.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Gimkiewicz, C.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Han, J.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

Hansen, O.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
[CrossRef]

Hunt, R.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

Hutley, M. C.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

Jeong, K.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

Kang, S.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
[CrossRef]

S. Kim and S. Kang, J. Phys. D 36, 2451 (2003).
[CrossRef]

Ke, C.

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

Kim, D.

S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
[CrossRef]

Kim, H.

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

Kim, S.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
[CrossRef]

S. Kim and S. Kang, J. Phys. D 36, 2451 (2003).
[CrossRef]

Kim, Y.

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

Lai, J.

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

Larsen, K. P.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
[CrossRef]

Lee, J.

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

Lim, J.

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

Moser, M.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Neville, C. G. A.

Obi, S.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Park, N.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

Pedersen, J. S.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Popovic, Z. D.

Ravnkilde, J. T.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
[CrossRef]

Savander, P.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

Sprague, R. A.

Stevens, R. F.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

Thiele, H.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Urban, C.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Yi, X.

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

Yoo, J.

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

Zschokke, C.

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kim, J. Lee, J. Lim, S. Kim, S. Kang, Y. Kim, and C. Busch, Appl. Phys. Lett. 88, 241114 (2006).
[CrossRef]

Chin. Phys. Lasers (1)

C. Ke, X. Yi, J. Lai, and S. Chen, Chin. Phys. Lasers 22, 135 (2005).

J. Microlithogr., Microfabr., Microsyst. (1)

S. Kim, D. Kim, and S. Kang, J. Microlithogr., Microfabr., Microsyst. 2, 356 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, J. Micromech. Microeng. 15, 873 (2005).
[CrossRef]

J. Lim, K. Jeong, S. Kim, J. Han, J. Yoo, N. Park, and S. Kang, J. Micromech. Microeng. 49, 77 (2006).
[CrossRef]

J. Phys. D (1)

S. Kim and S. Kang, J. Phys. D 36, 2451 (2003).
[CrossRef]

Proc. SPIE (1)

C. Gimkiewicz, M. Moser, S. Obi, C. Urban, J. S. Pedersen, H. Thiele, C. Zschokke, and M. T. Gale, in Proc. SPIE 5453, 13 (2004).
[CrossRef]

Pure Appl. Opt. (1)

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, Pure Appl. Opt. 3, 133 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of fabrication processes for integrating a microlens array onto an image sensor: (a) conventional reflow process and (b) UV imprinting process.

Fig. 2
Fig. 2

Comparison between structures of (a) a real image sensor and (b) a simulated image sensor with the following parameters: side length of square lens, 4.65 μ m ; detector and light-shielding film separation, 2.5 μ m ; light-shielding film and color filter layer separation, 1.0 μ m ; thickness of color filter layer, 1.5 μ m ; and thickness of planarization layer, 1.5 μ m .

Fig. 3
Fig. 3

Effects of (a) residual-layer thickness and (b) misalignment between the microlens and detector area on the photosensitivity. The photosensitivity increases as the thickness of the residual layer decreases, and is more than 60% in the presence of misalignments of up to 0.7 and 0.48 μ m for residual-layer thicknesses of 1.5 and 1.0 μ m , respectively.

Fig. 4
Fig. 4

(a) Effects of compression pressure on the sag height of the UV-imprinted lens array and (b) comparison of surface profiles of the master and integrated microlens arrays with a side length of 4.63 μ m and a pitch of 5.2 μ m .

Fig. 5
Fig. 5

SEM images of the (a) integrated microlens array and a (b) cross section of the integrated microlens array formed on the simulated image sensor chip array.

Fig. 6
Fig. 6

Normalized beam intensity distribution at the image plane and the imaged pixel and sensing area: pixel size, 5.2 μ m × 5.2 μ m ; sensing area size, 3.0 μ m × 3.0 μ m ; and beam spot size (FWHM), 1.19 μ m .

Metrics