Abstract

Third-harmonic generation (THG) in the cw regime from C-band radiation was achieved in annealed proton-exchanged periodically poled lithium niobate (PPLN) waveguides. By suitable design of fabrication parameters and operating conditions, quasi-phase-matching (QPM) is obtained simultaneously for the second-harmonic generation process (ω2ω, first-order QPM) and for the sum-frequency-generation process (ω+2ω3ω, third-order QPM), which provides the third harmonic of the pump field. The high overlap between the field profiles of the interacting modes—TM00 at ω and TM10 at 2ω and 3ω—results in what is believed to be the highest ever reported normalized conversion efficiency for THG from telecommunication wavelengths, equal to 0.72%W2cm4.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. "Optical interfaces for multi-channel systems with optical amplifiers," ITU-T Recommendation G.962 (1998).
  2. P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
    [CrossRef] [PubMed]
  3. J. L. Hall, IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
    [CrossRef]
  4. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997).
    [CrossRef] [PubMed]
  5. K. Koynov, S. M. Saltiel, and Y. S. Kivshar, Opt. Lett. 30, 2284 (2005).
    [CrossRef] [PubMed]
  6. S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
    [CrossRef]
  7. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
    [CrossRef]
  8. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
    [CrossRef]
  9. A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, Opt. Lett. 25, 905 (2000).
    [CrossRef]
  10. H.-C. Chui, S.-Y. Shaw, M.-S. Ko, Y.-W. Liu, J.-T. Shy, T. Lin, W.-Y. Cheng, R. V. Roussev, and M. M. Fejer, Opt. Lett. 30, 646 (2005).
    [CrossRef] [PubMed]
  11. R. Klein and A. Arie, Appl. Phys. B 75, 79 (2002).
    [CrossRef]
  12. Yu. N. Korkishko and V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

2005 (2)

2004 (1)

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

2002 (3)

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

R. Klein and A. Arie, Appl. Phys. B 75, 79 (2002).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
[CrossRef]

2000 (2)

1997 (2)

Arie, A.

R. Klein and A. Arie, Appl. Phys. B 75, 79 (2002).
[CrossRef]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, Opt. Lett. 25, 905 (2000).
[CrossRef]

Bosenberg, W. R.

Cancio Pastor, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

Cheng, W.-Y.

Chou, M. H.

Chui, H.-C.

Danielli, A.

de Mauro, C.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

De Natale, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

Fedorov, V. A.

Yu. N. Korkishko and V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Fejer, M. M.

Fradkin-Kashi, K.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

Fujimura, M.

Giusfredi, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

Hagel, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

Hall, J. L.

J. L. Hall, IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
[CrossRef]

Hollberg, L.

Inguscio, M.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

Kivshar, Y. S.

Klein, R.

R. Klein and A. Arie, Appl. Phys. B 75, 79 (2002).
[CrossRef]

Ko, M.-S.

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Koynov, K.

Kurz, J. R.

Levenson, M. D.

Lin, T.

Liu, Y.-W.

Ming, N.

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Parameswaran, K. R.

Pfister, O.

Rosenman, G.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

Roussev, R. V.

Route, R. K.

Rusian, P.

Saltiel, S. M.

Shaw, S.-Y.

Shy, J.-T.

Urenski, P.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

Van Baak, D. A.

Wells, J. S.

Zhu, S.

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Zhu, Y.

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Zink, L.

Appl. Phys. B (1)

R. Klein and A. Arie, Appl. Phys. B 75, 79 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. L. Hall, IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 23903 (2002).
[CrossRef]

Science (1)

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Other (2)

"Optical interfaces for multi-channel systems with optical amplifiers," ITU-T Recommendation G.962 (1998).

Yu. N. Korkishko and V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase mismatch of the SFG process (solid curve, left-hand axis) and phase-matching wavelength of the SHG process (dashed curve, right-hand axis) calculated versus optical depth (lower scale) and corresponding total annealing time (upper scale).

Fig. 2
Fig. 2

Phase-matching-wavelength detuning from degenerate SFG (squares, left-hand axis) and phase-matching wavelength of the SHG process (circles, right-hand axis) measured versus optical depth (lower scale) and corresponding total annealing time (upper scale).

Fig. 3
Fig. 3

Output spectra at three different temperatures: the leftward peaks are due to a phase-matched nondegenerate SFG process, the rightward to a phase-mismatched degenerate SFG process.

Fig. 4
Fig. 4

Experimental (dotted curve) and calculated (solid curve) output power of the sum-frequency field ( P SF in the figure) as a function of the signal wavelength λ ¯ for an input pump power of 16 mW , a signal power of 16 mW , and a pump wavelength of 1570.7 nm . Inset, phase-matching curve of the SHG process in the same channel and for the same pump power. The second- and third-harmonic peak powers are 168 μ W and 34 nW , respectively.

Tables (1)

Tables Icon

Table 1 Design Parameters for a Waveguide Giving Phase-Matched THG a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ β SHG = 4 π λ ( n 2 ω n ω ) r 2 π Λ = 0 ,
Δ β SFG = 2 π λ ( 3 n 3 ω 2 n 2 ω n ω ) s 2 π λ = 0 ,

Metrics