Abstract

An optical binary switch for aircraft applications is demonstrated. A fiber Fabry–Perot interferometer (FFPI) bonded to a cantilever is used as the sensing element. A white-light interferometry system with two bulk Michelson interferometers sharing the same motor-driven translation stage is utilized to monitor the elongation of the FFPI. The system exhibits excellent linearity as a force sensor; the experimental results are in good agreement with theoretical calculated values. With a properly set threshold value, the system produces a binary output.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
    [CrossRef]
  2. Z. Xie and H. F. Taylor, "A fiber optic binary switch for aircraft application," presented at 2006 IEEE Sarnoff Symposium, March 2006.
  3. M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
    [CrossRef]
  4. G. Beheim, Appl. Opt. 24, 2335 (1985).
    [CrossRef] [PubMed]
  5. H. Choi, H. F. Taylor, and C. E. Lee, Opt. Lett. 22, 1814 (1997).
    [CrossRef]
  6. C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129 (1991).
    [CrossRef]
  7. Y. Chen and H. F. Taylor, Opt. Lett. 27, 903 (2002).
    [CrossRef]
  8. C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
    [CrossRef]

2002 (1)

2000 (1)

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

1999 (1)

M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
[CrossRef]

1997 (1)

1991 (1)

C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129 (1991).
[CrossRef]

1988 (1)

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

1985 (1)

Beheim, G.

Brown, T.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

Chen, Y.

Choi, H.

Fernando, G. F.

M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
[CrossRef]

Jensen, B.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

Lee, C. E.

H. Choi, H. F. Taylor, and C. E. Lee, Opt. Lett. 22, 1814 (1997).
[CrossRef]

C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129 (1991).
[CrossRef]

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

Rogowski, R.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

Singh, M.

M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
[CrossRef]

Taylor, H. F.

Y. Chen and H. F. Taylor, Opt. Lett. 27, 903 (2002).
[CrossRef]

H. Choi, H. F. Taylor, and C. E. Lee, Opt. Lett. 22, 1814 (1997).
[CrossRef]

C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129 (1991).
[CrossRef]

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

Z. Xie and H. F. Taylor, "A fiber optic binary switch for aircraft application," presented at 2006 IEEE Sarnoff Symposium, March 2006.

Tuck, C. J.

M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
[CrossRef]

Wood, K.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

Xie, Z.

Z. Xie and H. F. Taylor, "A fiber optic binary switch for aircraft application," presented at 2006 IEEE Sarnoff Symposium, March 2006.

Appl. Opt. (1)

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

J. Lightwave Technol. (1)

C. E. Lee and H. F. Taylor, J. Lightwave Technol. 9, 129 (1991).
[CrossRef]

Opt. Lett. (2)

Smart Mater. Struct. (2)

M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
[CrossRef]

K. Wood, T. Brown, R. Rogowski, and B. Jensen, Smart Mater. Struct. 9, 163 (2000).
[CrossRef]

Other (1)

Z. Xie and H. F. Taylor, "A fiber optic binary switch for aircraft application," presented at 2006 IEEE Sarnoff Symposium, March 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

WLI system for the monitoring fiber interferometer.

Fig. 2
Fig. 2

Signal output from sensing FFPI, reference FFPI, and the DFB laser. The sample number (horizontal axis) is proportional to the time relative to the start of the scan.

Fig. 3
Fig. 3

Setup for calibration of a FFPI sensor.

Fig. 4
Fig. 4

Repeatability test of the dependence of central fringe displacement on increasing and then decreasing weight, compared with the calculated theoretical result.

Fig. 5
Fig. 5

Binary fiber optic switch.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ( 4 π L ε λ ) { 1 0.5 n 2 [ p 12 ν ( p 11 p 12 ) ] } ,
ε = λ Δ ϕ ( 14.3 L ) .
ε = 6 ( L b L f ) G ( E b h 2 ) .
ε = 6 ( L b L 2 ) G ( E b h 2 ) .

Metrics