Abstract

Meanderline wave plates are in common use at radio frequencies as polarization retarders. We present initial results of a gold meanderline structure on a silicon substrate that functions at a wavelength of 10.6μm in the IR. The measured results show a distinct change in the polarization state of the incident beam after passing through the device, inducing a 74° phase retardance between horizontal and vertical components. A high degree of polarization (88%) is maintained in the transmitted beam with an overall power transmittance of 38% and a beam profile that remains essentially unchanged.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
    [CrossRef]
  2. M. Mazur and W. Zieniutycz, in 13th International Conference on Microwaves, Radar, and Wireless Communications (IEEE, 2000), Vol. 1, pp. 78-81.
  3. J. Zürcher, Microwave Opt. Technol. Lett. 18, 320-323 (1998).
    [CrossRef]
  4. T. K. Wu, IEEE Microw. Guid. Wave Lett. 4, 199 (1994).
    [CrossRef]
  5. B. A. Munk, Finite Antenna Arrays and FSS (Wiley-IEEE, 2003), Appendix C.
    [CrossRef]
  6. J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.
  7. D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
    [CrossRef]
  8. Guide to the Expression of Uncertainty in Measurement, 2nd ed. (International Organization for Standardization, 1995).

1998

J. Zürcher, Microwave Opt. Technol. Lett. 18, 320-323 (1998).
[CrossRef]

1994

T. K. Wu, IEEE Microw. Guid. Wave Lett. 4, 199 (1994).
[CrossRef]

1973

L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
[CrossRef]

Boreman, G.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Folks, W.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Ginn, J.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
[CrossRef]

Hacking, C.

L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
[CrossRef]

Lail, B.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Mazur, M.

M. Mazur and W. Zieniutycz, in 13th International Conference on Microwaves, Radar, and Wireless Communications (IEEE, 2000), Vol. 1, pp. 78-81.

Munk, B. A.

B. A. Munk, Finite Antenna Arrays and FSS (Wiley-IEEE, 2003), Appendix C.
[CrossRef]

Robinson, L.

L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
[CrossRef]

Shelton, D.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Tharp, J.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

Wu, T. K.

T. K. Wu, IEEE Microw. Guid. Wave Lett. 4, 199 (1994).
[CrossRef]

Young, L.

L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
[CrossRef]

Zieniutycz, W.

M. Mazur and W. Zieniutycz, in 13th International Conference on Microwaves, Radar, and Wireless Communications (IEEE, 2000), Vol. 1, pp. 78-81.

Zürcher, J.

J. Zürcher, Microwave Opt. Technol. Lett. 18, 320-323 (1998).
[CrossRef]

IEEE Microw. Guid. Wave Lett.

T. K. Wu, IEEE Microw. Guid. Wave Lett. 4, 199 (1994).
[CrossRef]

IEEE Trans. Antennas Propag.

L. Young, L. Robinson, and C. Hacking, IEEE Trans. Antennas Propag. 21, 376 (1973).
[CrossRef]

Microwave Opt. Technol. Lett.

J. Zürcher, Microwave Opt. Technol. Lett. 18, 320-323 (1998).
[CrossRef]

Other

M. Mazur and W. Zieniutycz, in 13th International Conference on Microwaves, Radar, and Wireless Communications (IEEE, 2000), Vol. 1, pp. 78-81.

B. A. Munk, Finite Antenna Arrays and FSS (Wiley-IEEE, 2003), Appendix C.
[CrossRef]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, in 22nd International Review of Progress in Applied Computational Electromagnetics (ACES, 2006), pp. 307-311.

D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
[CrossRef]

Guide to the Expression of Uncertainty in Measurement, 2nd ed. (International Organization for Standardization, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Electron micrograph image of the fabricated gold meanderline structure on a high-resistivity silicon substrate and (b) the expected phase delay ( φ ) , axial ratio (AR), and power transmission coefficients ( T TE and T TE ) as modeled in PMM with a marker at 10.6 μ m for comparison to the measured data.

Fig. 2
Fig. 2

Schematic of the experimental setup: A, CO 2 laser; B, wire-grid linear polarizer; C, meanderline; D, quarter-wave plate; E, analyzing polarizer; F and G, signal and reference detectors connected to a computer for data acquisition.

Fig. 3
Fig. 3

Polarization ellipses for incident beam (left) and transmitted beam (right).

Fig. 4
Fig. 4

Beam contours (a) before and (b) after the meanderline.

Tables (1)

Tables Icon

Table 1 Stokes Parameters and Polarization-Ellipse Parameters for the Incident and Transmitted Beams

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I 0 + I 90 , S 1 = I 0 I 90 , S 2 = 2 I 45 S 0 ,
S 3 = 2 I q 45 S 0 .
tan ( 2 ψ ) = S 3 S 0 , AR = 1 { tan [ 1 2 sin 1 ( S 3 S 1 ) ] } .
φ = tan 1 ( S 3 S 2 ) .

Metrics