Abstract

A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman–EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry–Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of 60dB has been achieved for a 50km transmission distance with a low Raman pump power of 170mW at a wavelength of 1455nm and a low EDFA pump power of 40mW at a wavelength of 980nm, which is the highest optical SNR achieved so far for a 50km long FBG sensor system, to our knowledge.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  2. Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997).
    [CrossRef]
  3. Y. J. Rao, Opt. Lasers Eng. 31, 297 (1999).
    [CrossRef]
  4. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Opt. Express 11, 476 (2003).
    [CrossRef] [PubMed]
  5. P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
    [CrossRef]
  6. P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
    [CrossRef]

2005 (1)

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

2004 (1)

P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

2003 (1)

1999 (1)

Y. J. Rao, Opt. Lasers Eng. 31, 297 (1999).
[CrossRef]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Chang, C. C.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

Chi, S.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

Chiou, H. Y.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

Chung, Y.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Feng, K. M.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Han, Y. G.

Kang, J. U.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Kim, C. S.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlank, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lee, S. B.

Paek, U. C.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Peng, P. C.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

Peng, W. R.

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, Opt. Lasers Eng. 31, 297 (1999).
[CrossRef]

Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

Tseng, H.-Y.

P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. C. Peng, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlank, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

Opt. Commun. (1)

P. C. Peng, K. M. Feng, W. R. Peng, H. Y. Chiou, C. C. Chang, and S. Chi, Opt. Commun. 252, 127 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

Y. J. Rao, Opt. Lasers Eng. 31, 297 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the long-distance FBG sensing system with hybrid Raman–EDF amplification based on a tunable fiber ring laser configuration.

Fig. 2
Fig. 2

Spectrum of the tunable fiber Fabry–Perot (F-P) filter.

Fig. 3
Fig. 3

Spectra of four reflective FBG signals with and without hybrid Raman–EDF amplification. (a) 1544 nm at 25 km , (b) 1548 nm at 25 km , (c) 1552 nm at 50 km , (d) 1556 nm at 50 km .

Fig. 4
Fig. 4

Temperature and strain responses of the FBG located at 50 km . (a) Relationship between FBG wavelength shift and strain. (b) Relationship between FBG wavelength shift and temperature.

Tables (1)

Tables Icon

Table 1 FBG Sensing System Performance with and without Hybrid EDF–Raman Amplification

Metrics