Abstract

It is analytically shown that the presence of submicrometer-sized air gaps between the dielectric and metal contact surfaces in a dielectric-filled metallic parallel-plate waveguide can have a dramatic effect on the guided-wave propagation of subpicosecond terahertz pulses. Through the use of metal-evaporated dielectric surfaces to overcome the imperfect contact problem, and a special air–dielectric–air cascaded waveguide geometry to avoid multimode excitation, undistorted subpicosecond terahertz pulse propagation via the single-TEM mode is demonstrated, for what is believed to be the first time, in a silicon-filled PPWG.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
    [CrossRef]
  2. R. Mendis and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. 11, 444 (2001).
    [CrossRef]
  3. J. Zhang and D. Grischkowsky, J. Opt. Soc. Am. B 20, 1894 (2003).
    [CrossRef]
  4. S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003).
    [CrossRef]
  5. Z. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
    [CrossRef] [PubMed]
  6. H. Cao, R. A. Linke, and A. Nahata, Opt. Lett. 29, 1751 (2004).
    [CrossRef] [PubMed]
  7. M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
    [CrossRef]
  8. R. Mendis, Electron. Lett. 42, 26 (2006).
    [CrossRef]
  9. N. Marcuvitz, Waveguide Handbook (Peregrinus, 1993), Chap. 2, p. 64.
  10. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8, p. 394.
  11. N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]

2006 (1)

R. Mendis, Electron. Lett. 42, 26 (2006).
[CrossRef]

2005 (2)

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

2004 (2)

2003 (2)

J. Zhang and D. Grischkowsky, J. Opt. Soc. Am. B 20, 1894 (2003).
[CrossRef]

S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003).
[CrossRef]

2001 (2)

R. Mendis and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. 11, 444 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8, p. 394.

Bolivar, P. H.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Cao, H.

Coleman, S.

S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003).
[CrossRef]

Grischkowsky, D.

S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003).
[CrossRef]

J. Zhang and D. Grischkowsky, J. Opt. Soc. Am. B 20, 1894 (2003).
[CrossRef]

R. Mendis and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. 11, 444 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

Jian, Z.

Kurz, H.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Linke, R. A.

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (Peregrinus, 1993), Chap. 2, p. 64.

Mendis, R.

R. Mendis, Electron. Lett. 42, 26 (2006).
[CrossRef]

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. 11, 444 (2001).
[CrossRef]

Mittleman, D. M.

Nagel, M.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Nahata, A.

Pearce, J.

Planken, P. C. M.

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

Zhang, J.

Appl. Phys. Lett. (2)

S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

Electron. Lett. (1)

R. Mendis, Electron. Lett. 42, 26 (2006).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. 11, 444 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Semicond. Sci. Technol. (1)

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Other (2)

N. Marcuvitz, Waveguide Handbook (Peregrinus, 1993), Chap. 2, p. 64.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8, p. 394.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Propagated pulses through the PPWGs whose axial cross sections are shown in the inset. (a) AF waveguide, (b) waveguide with a DF section, (c) theoretical simulation, and (d) waveguide with a metallized dielectric section. Vertical axes are not to scale. Time zero is arbitrary.

Fig. 2
Fig. 2

(a) Amplitude spectra of the measured pulses in Fig. 1. The respective amplitudes are not to the same reference. The dashed vertical lines correspond to higher-order mode cutoff frequencies. (b) Group and phase velocity for the TM 0 mode of the DF-PPWG with 0.5 μ m (thick solid curves), and 0.1 μ m (thin solid curves) air gaps, compared to that of the TEM mode of the ideal waveguide (dashed line). A typical mode profile is shown in the inset (not to scale).

Fig. 3
Fig. 3

Transverse cross-sectional views of the DF waveguides used for the theoretical development. Cross-hatched areas indicate metal. (a) Partially filled rectangular waveguide, (b) PPWG with an air gap at the top plate, and (c) PPWG with air gaps at top and bottom plates.

Metrics