Abstract

We report spatial and temporal dispersion compensation for fan-out of femtosecond pulses with a low-frequency diffraction grating by means of a hybrid diffractive–refractive lens triplet. In this way, we achieve a multifocal light structure with nearly diffraction-limited light spots even for 20fs pulse duration. The spatial chromatic compensation, which drastically reduces the lateral walk-off of the various spectral components, also allows us to improve the available bandwidth at the dispersion-compensated diffraction orders. In fact, the temporal width of the output pulse is essentially limited by the group-delay dispersion term, which is shown to be small. The high spatiotemporal resolution provided by our proposal permits parallel multifocal processing of materials with femtosecond pulses.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.
  2. C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
    [CrossRef]
  3. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, Opt. Express 12, 1908 (2004).
    [CrossRef] [PubMed]
  4. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, Opt. Lett. 30, 1479 (2005).
    [CrossRef] [PubMed]
  5. Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
    [CrossRef]
  6. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, Opt. Lett. 28, 1918 (2003).
    [CrossRef] [PubMed]
  7. S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
    [CrossRef] [PubMed]
  8. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  9. J. Li, H. Zhang, D. R. Alexander, D. W. Doerr, and N. R. Tadepalli, J. Opt. Soc. Am. A 22, 1304 (2005).
    [CrossRef]
  10. U. Fuchs, U. D. Zeitner, and A. Tünnermann, Opt. Express 13, 3852 (2005).
    [CrossRef] [PubMed]
  11. J. Amako, K. Nagasaka, and N. Kazuhiro, Opt. Lett. 27, 969 (2002).
    [CrossRef]
  12. G. Li, C. Zhou, and E. Dai, J. Opt. Soc. Am. A 22, 767 (2005).
    [CrossRef]
  13. U. Fuchs, U. D. Zeitner, and A. Tünnermann, Opt. Lett. 31, 1516 (2006).
    [CrossRef] [PubMed]
  14. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, Appl. Opt. 37, 6164 (1998).
    [CrossRef]

2006

2005

2004

2003

2002

J. Amako, K. Nagasaka, and N. Kazuhiro, Opt. Lett. 27, 969 (2002).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

1998

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, Appl. Opt. 37, 6164 (1998).
[CrossRef]

Alexander, D. R.

Amako, J.

Andrés, P.

Antolini, R.

Audouard, E.

Choudhury, A.

Climent, V.

Dai, E.

Doerr, D. W.

Fernández-Alonso, M.

Froner, E.

Fuchs, U.

Hasegawa, S.

Hayasaki, Y.

S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Hirao, K.

Huignard, J.-P.

Huot, N.

Kamlage, G.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Kazuhiro, N.

Kuroiwa, Y.

Lancis, J.

Larat, C.

Li, G.

Li, J.

Loiseaux, B.

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Momma, C.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Nagasaka, K.

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Narita, Y.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Nolte, S.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Pavone, F. S.

Sacconi, L.

Sanner, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Tadepalli, N. R.

Taghizadeh, M. R.

Tajahuerce, E.

Takeshima, N.

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Tanaka, S.

Tünnermann, A.

von Alvensleben, F.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Zeitner, U. D.

Zhang, H.

Zhou, C.

Appl. Opt.

Appl. Phys. A

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Appl. Phys. Lett.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conventional DG-based multifocal generation under ultrashort pulse illumination. Inset, computer-simulated irradiance pattern for the chromatically distorted fifth-order diffraction spot (numerical values are given in the text).

Fig. 2
Fig. 2

Hybrid diffractive–refractive lens triplet for multifocal processing with a femtosecond pulse. Inset, computer-simulated irradiance pattern for the distortion-compensated fifth-order diffraction spot.

Fig. 3
Fig. 3

Relative stretching versus input pulse width. Solid curve, broadening, both spatial and temporal, for the fifth-order diffraction maximum ( n = 5 ) without chromatic correction. Long-dashed curve, residual spatial broadening with chromatic correction. Short-dashed curve, residual temporal broadening for n = 5 with chromatic correction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

GD ( r , r o ) = 1 c [ L ( r , r o , ω 0 ) ω 0 L ( r , r o , ω ) ω ω 0 ] ,
σ x , DC ( ω ) σ 0 = ω 0 B ( ω ) g f ω { 1 + [ 2 A ( ω ) ω σ x 2 c B ( ω ) ] 2 } 1 2 ,
σ t , DC σ t = { 1 + [ GDD ( r = 2 π c g f n p ω 0 , r o = σ x 2 ) 2 σ t 2 ] 2 } 1 2 .

Metrics