Abstract

We report spatial and temporal dispersion compensation for fan-out of femtosecond pulses with a low-frequency diffraction grating by means of a hybrid diffractive–refractive lens triplet. In this way, we achieve a multifocal light structure with nearly diffraction-limited light spots even for 20fs pulse duration. The spatial chromatic compensation, which drastically reduces the lateral walk-off of the various spectral components, also allows us to improve the available bandwidth at the dispersion-compensated diffraction orders. In fact, the temporal width of the output pulse is essentially limited by the group-delay dispersion term, which is shown to be small. The high spatiotemporal resolution provided by our proposal permits parallel multifocal processing of materials with femtosecond pulses.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.
  2. C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
    [CrossRef]
  3. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, Opt. Express 12, 1908 (2004).
    [CrossRef] [PubMed]
  4. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, Opt. Lett. 30, 1479 (2005).
    [CrossRef] [PubMed]
  5. Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
    [CrossRef]
  6. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, Opt. Lett. 28, 1918 (2003).
    [CrossRef] [PubMed]
  7. S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
    [CrossRef] [PubMed]
  8. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  9. J. Li, H. Zhang, D. R. Alexander, D. W. Doerr, and N. R. Tadepalli, J. Opt. Soc. Am. A 22, 1304 (2005).
    [CrossRef]
  10. U. Fuchs, U. D. Zeitner, and A. Tünnermann, Opt. Express 13, 3852 (2005).
    [CrossRef] [PubMed]
  11. J. Amako, K. Nagasaka, and N. Kazuhiro, Opt. Lett. 27, 969 (2002).
    [CrossRef]
  12. G. Li, C. Zhou, and E. Dai, J. Opt. Soc. Am. A 22, 767 (2005).
    [CrossRef]
  13. U. Fuchs, U. D. Zeitner, and A. Tünnermann, Opt. Lett. 31, 1516 (2006).
    [CrossRef] [PubMed]
  14. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, Appl. Opt. 37, 6164 (1998).
    [CrossRef]

2006 (2)

2005 (5)

2004 (1)

2003 (1)

2002 (2)

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

J. Amako, K. Nagasaka, and N. Kazuhiro, Opt. Lett. 27, 969 (2002).
[CrossRef]

1998 (2)

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, Appl. Opt. 37, 6164 (1998).
[CrossRef]

Alexander, D. R.

Amako, J.

Andrés, P.

Antolini, R.

Audouard, E.

Choudhury, A.

Climent, V.

Dai, E.

Doerr, D. W.

Fernández-Alonso, M.

Froner, E.

Fuchs, U.

Hasegawa, S.

Hayasaki, Y.

S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Hirao, K.

Huignard, J.-P.

Huot, N.

Kamlage, G.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Kazuhiro, N.

Kuroiwa, Y.

Lancis, J.

Larat, C.

Li, G.

Li, J.

Loiseaux, B.

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Momma, C.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Nagasaka, K.

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Narita, Y.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Nolte, S.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Pavone, F. S.

Sacconi, L.

Sanner, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Tadepalli, N. R.

Taghizadeh, M. R.

Tajahuerce, E.

Takeshima, N.

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Tanaka, S.

Tünnermann, A.

von Alvensleben, F.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Zeitner, U. D.

Zhang, H.

Zhou, C.

Appl. Opt. (1)

Appl. Phys. A (1)

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 67, 517 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Nakata, T. Okada, and M. Maeda, Appl. Phys. Lett. 81, 4239 (2002).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (5)

Other (1)

S. Nolte, in Ultrafast Lasers, Technology and Applications, M.E.Fermann, A.Galvanauskas, and G.Sucha, eds. (Marcel Dekker, 2003), p. 359.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conventional DG-based multifocal generation under ultrashort pulse illumination. Inset, computer-simulated irradiance pattern for the chromatically distorted fifth-order diffraction spot (numerical values are given in the text).

Fig. 2
Fig. 2

Hybrid diffractive–refractive lens triplet for multifocal processing with a femtosecond pulse. Inset, computer-simulated irradiance pattern for the distortion-compensated fifth-order diffraction spot.

Fig. 3
Fig. 3

Relative stretching versus input pulse width. Solid curve, broadening, both spatial and temporal, for the fifth-order diffraction maximum ( n = 5 ) without chromatic correction. Long-dashed curve, residual spatial broadening with chromatic correction. Short-dashed curve, residual temporal broadening for n = 5 with chromatic correction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

GD ( r , r o ) = 1 c [ L ( r , r o , ω 0 ) ω 0 L ( r , r o , ω ) ω ω 0 ] ,
σ x , DC ( ω ) σ 0 = ω 0 B ( ω ) g f ω { 1 + [ 2 A ( ω ) ω σ x 2 c B ( ω ) ] 2 } 1 2 ,
σ t , DC σ t = { 1 + [ GDD ( r = 2 π c g f n p ω 0 , r o = σ x 2 ) 2 σ t 2 ] 2 } 1 2 .

Metrics