Abstract

We demonstrate a low-cost, electrically tunable diffraction grating that is driven by a dielectric elastomer actuator. The angular tuning range of the polymer-based device is up to 118mrad for the first diffracted order. The achievable grating period change of 32% is an improvement by more than a factor of 150 compared with existing analog tunable diffraction gratings based on hard materials. We show that in combination with a white light source, the presented diffraction grating can be used as a wavelength-adjustable luminous source. Such an illuminant has a potential application in inexpensive color displays that could reproduce all perceivable colors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
    [CrossRef] [PubMed]
  2. A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
    [CrossRef]
  3. C. W. Wong, Y. Jeon, G. Barbastathis, and S.-G. Kim, Appl. Opt. 42, 621 (2003).
    [CrossRef] [PubMed]
  4. J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
    [CrossRef]
  5. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
    [CrossRef] [PubMed]
  6. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 2582 (1993).
    [CrossRef] [PubMed]
  7. R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
    [CrossRef]
  8. Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
    [CrossRef] [PubMed]
  9. C. Huang and Q. M. Zhang, Appl. Phys. Lett. 82, 3502 (2003).
    [CrossRef]

2004 (1)

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

2003 (2)

2002 (2)

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

2000 (1)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

1999 (1)

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

1993 (1)

1992 (1)

Anquetil, P. A.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Barbastathis, G.

Bloom, D. M.

Cheng, Z.-Y.

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Eckerle, J.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

Huang, C.

C. Huang and Q. M. Zhang, Appl. Phys. Lett. 82, 3502 (2003).
[CrossRef]

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Hunter, I. W.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Jeon, Y.

Joseph, J.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

Kim, S.-G.

Kornbluh, R.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

Lafontaine, S. R.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Li, H.

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Madden, J. D. W.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Madden, P. G. A.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Mehregany, M.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Merat, F. L.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Morris, G. M.

Oh, S.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

Pei, Q.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

Pelrine, R.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

Poh, M.

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Pytel, R. Z.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Raguin, D. H.

Sandejas, F. S. A.

Smith, S. W.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Solgaard, O.

Stanford, S.

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

Takshi, A.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Vandesteeg, N. A.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Wieringa, P. A.

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

Wong, C. W.

Xia, F.

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Xu, H.

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Yasseen, A. A.

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Zhang, Q. M.

C. Huang and Q. M. Zhang, Appl. Phys. Lett. 82, 3502 (2003).
[CrossRef]

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Huang and Q. M. Zhang, Appl. Phys. Lett. 82, 3502 (2003).
[CrossRef]

IEEE J. Ocean. Eng. (1)

J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29, 706 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, IEEE J. Sel. Top. Quantum Electron. 5, 75 (1999).
[CrossRef]

Nature (1)

Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, in Proc. SPIE 4695, 126 (2002).
[CrossRef]

Science (1)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 836 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the fabrication process for electrically tunable diffraction gratings based on artificial muscles. (a) In the first step, the dielectric elastomer actuator is assembled. (b) Then, an elastomer is spin coated onto a master grating and (c) bonded onto the actuator. (d) In the next step, the master grating is removed. (e) Finally, a reflection-enhancing gold layer is evaporated onto the flexible diffraction grating.

Fig. 2
Fig. 2

Grating period as a function of the applied voltage. The dotted curve represents the experimental data. The solid curve shows the analytical prediction ( Y = 280 kPa ) . The two light microscopy images ( 0 V and 4.5 kV ) illustrate the voltage dependence of the grating period.

Fig. 3
Fig. 3

(a) CCD camera images of the first-order diffracted light. Diameter of the illumination spot is 0.5 mm . (b) Observed wavelength as a function of the actuation voltage. Theoretical (solid curve) and experimental (dotted curve) data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n sin ( θ m ) n i sin ( θ i ) = m λ d .
d = d 0 1 ε ε 0 V 2 Y t 2 .

Metrics