Abstract

We demonstrate extremely efficient germanium-on-silicon metal–semiconductor–metal photodetectors with responsivities (R) as high as 0.85AW at 1.55μm and 2V reverse bias. Ge was directly grown on Si by using a novel heteroepitaxial growth technique, which uses multisteps of growth and hydrogen annealing to reduce surface roughness and threading dislocations that form due to the 4.2% lattice mismatch. Photodiodes on such layers exhibit reverse dark currents of 100mAcm2 and external quantum efficiency up to 68%. This technology is promising to realize monolithically integrated optoelectronics.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
    [CrossRef]
  2. S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
    [CrossRef]
  3. L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
    [CrossRef]
  4. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
    [CrossRef]
  5. A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.
  6. A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
    [CrossRef]
  7. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
    [CrossRef]
  8. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
    [CrossRef]
  9. V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
    [CrossRef]
  10. C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
    [CrossRef]

2005 (1)

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

2004 (1)

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

2003 (2)

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
[CrossRef]

2002 (1)

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

2000 (1)

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

1998 (1)

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

1989 (1)

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

1984 (1)

S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
[CrossRef]

Assanto, G.

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Bean, J. C.

S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
[CrossRef]

Berroth, M.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

Cannon, D. D.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

Chu, V.

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

Chui, C. O.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.

Colace, L.

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Conde, J. P.

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

Fama, S.

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

Ishikawa, Y.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

Itoh, Y.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Jutzi, M.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

Kasper, E.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

Kastalsky, A.

S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
[CrossRef]

Kimerling, L. C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Liu, J.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

Luan, H.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

Luan, H. C.

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Luryi, S.

S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
[CrossRef]

Masini, G.

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Nayfeh, A.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.

Oehme, M.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
[CrossRef]

Saraswat, K. C.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.

Shen, D. S.

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

Sugo, M.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Tachikawa, M.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Wada, K.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

Wagner, S.

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

Wöhl, G.

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Yamamoto, A.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Yonehara, T.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.

Appl. Phys. Lett. (6)

S. Fama, L. Colace, G. Masini, G. Assanto, and H. C. Luan, Appl. Phys. Lett. 81, 586 (2002).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, Appl. Phys. Lett. 85, 2815 (2004).
[CrossRef]

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1998).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).
[CrossRef]

V. Chu, J. P. Conde, D. S. Shen, and S. Wagner, Appl. Phys. Lett. 55, 262 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003).
[CrossRef]

M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, IEEE Photon. Technol. Lett. 17, 1510 (2005).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Luryi, A. Kastalsky, and J. C. Bean, IEEE Trans. Electron Devices ED-31, 1135 (1984).
[CrossRef]

Other (1)

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, 'A method to grow heteroepitaxial-Ge on Si: Multiple hydrogen annealing for heteroepitaxy (MHAH),' presented at MRS Spring 2005 Conference, San Fransisco, Calif., March 28-April 1, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Cross-sectional TEM image of an 400 nm heteroepitaxial-Ge layer on Si grown by the MHAH method. (b) Plan-view TEM image of the same layer. As the TEM sample becomes thinner (indicated by arrow), the lower part of the film is increasingly milled away, and only the upper layer of the film, showing drastically reduced defect density, remains. We estimate threading dislocation density of 2 × 10 8 cm 2 for the upper 100 nm . Dislocations have glided to the Si Ge interface (arrow indicates the direction away from the Ge Si interface). (c) Plan-view TEM image of 4.5 μ m layer [ 200 nm from the surface (arrow)]. Dislocation density further was reduced to around ( 5 7 ) × 10 7 cm 2 . (d) Cross-section of MSM photodetector fabricated on MHAH-Ge layer grown on Si starting substrate. SiO 2 layer was deposited and patterned before the e-beam evaporation of the metal electrodes. Defects are concentrated near the Si Ge interface.

Fig. 2
Fig. 2

Measured I dark for symmetric metal–Ge–metal photodiodes with 5 μ m electrode width and spacing. Ti, Ni, and Cr were used as electrode metals. Ti Ge Ti case yields the lowest I dark . Inset, current versus voltage characteristics of metal-semiconductor ( Ti Ge ) Schottky diode on MHAH-Ge, both forward and reverse bias regions.

Fig. 3
Fig. 3

Photodetector responsivity at λ = 1.55 μ m versus reverse bias for Ti Ge Ti MSM-PDs with 5 μ m finger width and spacing and 10 4 μ m 2 active area.

Metrics