Abstract

Most multiphoton imaging of biological specimens is performed using microscope objectives optimized for high image quality under wide-field illumination. We present a class of objectives designed de novo without regard for these traditional constraints, driven exclusively by the needs of fast multiphoton imaging in turbid media: the delivery of femtosecond pulses without dispersion and the efficient collection of fluorescence. We model the performance of one such design optimized for a typical brain-imaging setup and show that it can greatly outperform objectives commonly used for this task.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
    [CrossRef] [PubMed]
  3. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
    [CrossRef] [PubMed]
  4. E. Beaurepaire and J. Mertz, Appl. Opt. 41, 5376 (2002).
    [CrossRef] [PubMed]
  5. A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
    [CrossRef]
  6. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
    [CrossRef] [PubMed]
  7. A. Katsuyuki, Olympus Optical Company, Ltd., Japanese patent 8-292374 (November 5, 1996).
  8. K. Watanabe, Nikon Corporation, Japanese patent 2001-319653 (2001), U.S. patent 6,700,710 (March 24, 2004).
  9. P. Theer, M. T. Hasan, and W. Denk, Opt. Lett. 28, 1022 (2003).
    [CrossRef] [PubMed]
  10. S. Kashima, Olympus Optical Company, Ltd., Japanese patents 3-050518 (March 5, 1991), 3-050519 (March 5, 1991), 3-058009 (March 13, 1991), 3-058010 (March 13, 1991), U.S. patents 5,144,496 (September 1, 1992), 5,253,117 (October 12, 1993), 5,291,340 (March 1, 1994).
  11. H. Hiroshi, Mitsubishi Electric Corporation, Japanese patent 59-077403 (May 2, 1984).

2005

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

2003

2002

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

E. Beaurepaire and J. Mertz, Appl. Opt. 41, 5376 (2002).
[CrossRef] [PubMed]

2001

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

1996

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Barilli, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

Beaurepaire, E.

E. Beaurepaire and J. Mertz, Appl. Opt. 41, 5376 (2002).
[CrossRef] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, Opt. Lett. 28, 1022 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Ferrari, M.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

Hasan, M. T.

Helmchen, F.

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

Hiroshi, H.

H. Hiroshi, Mitsubishi Electric Corporation, Japanese patent 59-077403 (May 2, 1984).

Kashima, S.

S. Kashima, Olympus Optical Company, Ltd., Japanese patents 3-050518 (March 5, 1991), 3-050519 (March 5, 1991), 3-058009 (March 13, 1991), 3-058010 (March 13, 1991), U.S. patents 5,144,496 (September 1, 1992), 5,253,117 (October 12, 1993), 5,291,340 (March 1, 1994).

Katsuyuki, A.

A. Katsuyuki, Olympus Optical Company, Ltd., Japanese patent 8-292374 (November 5, 1996).

Martelli, F.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

Mertz, J.

E. Beaurepaire and J. Mertz, Appl. Opt. 41, 5376 (2002).
[CrossRef] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Taddeucci, A.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

Theer, P.

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Watanabe, K.

K. Watanabe, Nikon Corporation, Japanese patent 2001-319653 (2001), U.S. patent 6,700,710 (March 24, 2004).

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Zaccanti, G.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

Appl. Opt.

J. Biomed. Opt.

A. Taddeucci, F. Martelli, M. Barilli, M. Ferrari, and G. Zaccanti, J. Biomed. Opt. 1, 117 (1996).
[CrossRef]

J. Neurosci. Methods

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, J. Neurosci. Methods 111, 29 (2001).
[CrossRef] [PubMed]

Nat. Methods

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Phys. Med. Biol. 47, 2059 (2002).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other

S. Kashima, Olympus Optical Company, Ltd., Japanese patents 3-050518 (March 5, 1991), 3-050519 (March 5, 1991), 3-058009 (March 13, 1991), 3-058010 (March 13, 1991), U.S. patents 5,144,496 (September 1, 1992), 5,253,117 (October 12, 1993), 5,291,340 (March 1, 1994).

H. Hiroshi, Mitsubishi Electric Corporation, Japanese patent 59-077403 (May 2, 1984).

A. Katsuyuki, Olympus Optical Company, Ltd., Japanese patent 8-292374 (November 5, 1996).

K. Watanabe, Nikon Corporation, Japanese patent 2001-319653 (2001), U.S. patent 6,700,710 (March 24, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Hybrid objectives for multiphoton imaging. (a) All-reflecting design (HR) consisting of image-forming mirrors M1 and M2 arranged in a Cassegrain configuration, and a nonimaging mirror M3 that increases the efficiency of epifluorescence collection. Dotted red and solid green rays illustrate the paths of excitation pulses and fluorescence photons, respectively. (b) Slightly higher collection efficiencies are achievable in principle by using a refractive imaging portion without a central obstruction. (c) Relaxed optical requirements for the nonimaging mirror allow part of it to be removed to permit access to tissue with electrodes while incurring a minimal loss of collection efficiency. (d) Virtual test setup for comparison of epifluorescence collection efficiency. Emitted photons were scattered in tissue and propagated through the objectives and three apertures (A1, objective mount; A2, filter cube; A3, detector mount) placed to mimic the arrangement in the Nikon Eclipse E600FN upright microscope.

Fig. 2
Fig. 2

Multiphoton imaging resolution of the HR design detailed in Table 1 is limited by the sum of all spatial aberrations of excitation pulses delivered through the imaging pathway, plotted here as the fraction of encircled energy delivered within a given distance from the centroid of the focal spot. A slight worsening of the resolution is evident only in the corners of the 200 μ m field of view.

Fig. 3
Fig. 3

Comparison of epifluorescence collection efficiency as a function of imaging depth in a semi-infinite turbid slab. HR design with the parameters in Table 1. Dashed curves indicate that the configuration of the HR objective was modified by defocusing the nonimaging reflector to maximize the collection efficiency. The outlined values at negative imaging depths refer to a nonscattering sample. The “thin slab” configuration refers to a 200 μ m thick slab placed in a recording chamber with a reflecting bottom. The crossing at 400 μ m is an artifact of objective selection.

Tables (1)

Tables Icon

Table 1 Parameters (mm) of the HR Objective Design Optimized for No Index Mismatch

Metrics