Abstract

We report a novel scheme to build a compact, tunable fiber laser. The tuning mechanism is based on the transmission property of a single-mode biconic fiber taper. While pulling the taper, we observe oscillations in the transmitted optical power that are due primarily to interference between a pair of excited modes within the tapered region, which are eventually coupled into the unstretched single-mode fiber at the end of the taper. A similar mechanism causes the modulation of the transmitted optical spectrum after the taper has been pulled and stabilized. It is this spectral modulation by the taper that is exploited here to control the wavelength of a fiber laser. The modulation can be adjusted by stretching the taper, thus enabling the tuning of the laser wavelength. We have built a 32mW Er-doped tunable ring fiber laser with a continuous tuning range of over 20nm and a signal-to-noise ratio of better than 45dB over the entire tuning range; our output power is limited only by the available pump power.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, J. Lightwave Technol. 24, 870 (2006).
    [CrossRef]
  2. F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  4. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  5. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, Appl. Opt. 26, 444 (1987).
    [CrossRef] [PubMed]
  6. A. C. Boucouvalas and G. Georgiou, Opt. Lett. 11, 257 (1986).
    [CrossRef] [PubMed]
  7. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
    [CrossRef]
  8. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
    [CrossRef]
  9. K. Kieu and M. Mansuripur, 'Biconical fiber taper sensors,' submitted to Opt. Lett.
  10. J. Buus and E. J. Murphy, J. Lightwave Technol. 24, 5 (2006).
    [CrossRef]

2006 (2)

2000 (2)

F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
[CrossRef]

1997 (1)

1991 (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

1987 (1)

1986 (1)

Allsop, T.

Arregui, F. J.

F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
[CrossRef]

Bennion, I.

Birks, T. A.

Black, R. J.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

Boucouvalas, A. C.

Bures, J.

Buus, J.

Cheung, G.

Floreani, F.

Georgiou, G.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, Appl. Opt. 26, 444 (1987).
[CrossRef] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

Jacques, F.

Jedrzejewski, K. P.

Kieu, K.

K. Kieu and M. Mansuripur, 'Biconical fiber taper sensors,' submitted to Opt. Lett.

Knight, J. C.

Lacroix, S.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, Appl. Opt. 26, 444 (1987).
[CrossRef] [PubMed]

Lapierre, J.

López-Amo, M.

F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
[CrossRef]

Love, J. D.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

Mansuripur, M.

K. Kieu and M. Mansuripur, 'Biconical fiber taper sensors,' submitted to Opt. Lett.

Marques, P. V. S.

Matías, I. R.

F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
[CrossRef]

Murphy, E. J.

Romero, R.

Russell, P. St. J.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

Veilleux, C.

Wadsworth, W. J.

Webb, D. J.

Appl. Opt. (1)

IEE Proc. (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. 138, 355 (1991).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (3)

Sens. Actuators (1)

F. J. Arregui, I. R. Matías, and M. López-Amo, Sens. Actuators 79, 90 (2000).
[CrossRef]

Other (1)

K. Kieu and M. Mansuripur, 'Biconical fiber taper sensors,' submitted to Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Oscillations of transmitted optical power during the taper heating–pulling process: starting point on the left, stopping on the right, 12 mm travel distance. Transmission stabilizes as soon as the pulling stops.

Fig. 2
Fig. 2

Spectral response of a biconic fiber taper and its shift upon stretching.

Fig. 3
Fig. 3

Dependence of the spectral shift of different fiber tapers on their FSR (a constant 100 μ m stretch was applied). The solid curve is an exponential decay fit.

Fig. 4
Fig. 4

Configuration of the fiber ring laser.

Fig. 5
Fig. 5

∎, Variations of the output power with wavelength for the tunable ring laser based on our biconic fiber taper. •, Relative stretch distance versus tuning wavelength. Inset, dependence of the ring laser’s output power on pump power; P thresh = 7 mW .

Fig. 6
Fig. 6

Tuning characteristic of the ring laser with an intracavity biconic fiber taper.

Metrics