Abstract

Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles (Rb=50nm) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength (1064nm) induces dramatic heating (266°CW). We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).
  2. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
    [CrossRef] [PubMed]
  3. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
    [CrossRef] [PubMed]
  4. L. Nugent-Glandorf and T. T. Perkins, Opt. Lett. 29, 2611 (2004).
    [CrossRef] [PubMed]
  5. K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef] [PubMed]
  6. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
    [CrossRef]
  7. R. C. Weast, CRC Handbook of Chemistry and Physics, (CRC, 1984).
  8. K. Pustovalov, Int. J. Heat Mass Transfer 36, 391 (1993).
    [CrossRef]
  9. A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
    [CrossRef] [PubMed]
  10. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  11. L. Finzi and J. Gelles, Science 267, 378 (1995).
    [CrossRef] [PubMed]
  12. D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
    [CrossRef] [PubMed]
  13. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
    [CrossRef] [PubMed]

2006 (1)

D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
[CrossRef] [PubMed]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

2004 (4)

M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).

L. Nugent-Glandorf and T. T. Perkins, Opt. Lett. 29, 2611 (2004).
[CrossRef] [PubMed]

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

2003 (1)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
[CrossRef] [PubMed]

1999 (1)

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

1995 (1)

L. Finzi and J. Gelles, Science 267, 378 (1995).
[CrossRef] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Pustovalov, Int. J. Heat Mass Transfer 36, 391 (1993).
[CrossRef]

Astruc, D.

M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Daniel, M. C.

M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).

Finzi, L.

L. Finzi and J. Gelles, Science 267, 378 (1995).
[CrossRef] [PubMed]

Florin, E.-L.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Gelles, J.

L. Finzi and J. Gelles, Science 267, 378 (1995).
[CrossRef] [PubMed]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Horber, J. K. H.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Nelson, P. C.

D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Nugent-Glandorf, L.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Perkins, T. T.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
[CrossRef] [PubMed]

Phillips, R.

D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
[CrossRef] [PubMed]

Pralle, A.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Pustovalov, K.

K. Pustovalov, Int. J. Heat Mass Transfer 36, 391 (1993).
[CrossRef]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
[CrossRef] [PubMed]

Segall, D. E.

D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Weast, R. C.

R. C. Weast, CRC Handbook of Chemistry and Physics, (CRC, 1984).

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Biophys. J. (1)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J. 84, 1308 (2003).
[CrossRef] [PubMed]

Chem. Rev. (Washington, D.C.) (1)

M. C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).

Int. J. Heat Mass Transfer (1)

K. Pustovalov, Int. J. Heat Mass Transfer 36, 391 (1993).
[CrossRef]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Horber, Microsc. Res. Tech. 44, 378 (1999).
[CrossRef] [PubMed]

Nano Lett. (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. E. Segall, P. C. Nelson, and R. Phillips, Phys. Rev. Lett. 96, 088306 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Science (1)

L. Finzi and J. Gelles, Science 267, 378 (1995).
[CrossRef] [PubMed]

Other (1)

R. C. Weast, CRC Handbook of Chemistry and Physics, (CRC, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Position record, x, of a gold (dark gray) and a polystyrene, PS (light gray), bead smoothed to 200 Hz . (b) Averaged power spectra fit for the same gold (dark gray) and PS bead (light gray). Modified Lorentzian (Ref. [6]) fits (solid curve) yielded roll-off frequencies, f 0 of 4283.1 ± 9.8 Hz and 330.1 ± 0.7 Hz , respectively. Measurements were done using a gold ( R b = 50 nm ) and a PS ( R b = 55 nm ) particle at a 200 kHz data acquisition rate and P = 205 mW . (c) Hydrodynamic drag calibration of a gold particle (circle) demonstrating trap linearity, where k d = 23 fN nm was deduced by a linear fit (line). Inset: histogram of x fitted to a Gaussian confirms trap linearity. (d) Comparison of the three different estimations of trap stiffness as a function of laser power, k d (circle), k eq (rectangle), and k ps (triangle).

Fig. 2
Fig. 2

(a) Temperature gradient surrounding an optically trapped gold particle ( R b = 50 nm ) at P = 205 mW . (b) Temperature (red) and water viscosity (blue) at the particle surface as a function of laser power. (c) Estimations of k trap , using the data in Fig. 1d, corrected for local temperature and viscosity with k d (circle), k eq (rectangle), and k ps (triangle).

Metrics