Abstract

Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
    [CrossRef]
  2. L.-H. V. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  3. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  4. L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  5. S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
    [CrossRef]
  6. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  7. G. Yao, S.-L. Jiao, and L.-H. V. Wang, Opt. Lett. 25, 734 (2000).
    [CrossRef]
  8. M. Gross, P. Goy, and M. Al-Koussa, Opt. Lett. 28, 2482 (2003).
    [CrossRef] [PubMed]
  9. S. Sakadzic and L.-H. V. Wang, Opt. Lett. 29, 2770 (2004).
    [CrossRef] [PubMed]
  10. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, Opt. Lett. 29, 2509 (2004).
    [CrossRef] [PubMed]
  11. J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030 (2002).
    [CrossRef] [PubMed]
  12. A. Lev and B. G. Sfez, Opt. Lett. 28, 1549 (2003).
    [CrossRef] [PubMed]
  13. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
    [CrossRef] [PubMed]
  14. G. R. Torr, Am. J. Phys. 52, 402 (1984).
    [CrossRef]
  15. D. Dalecki, Annu. Rev. Biomed. Eng. 6, 18.1 (2004).
    [CrossRef]
  16. G. Marquez and L.-H. V. Wang, Opt. Express 1, 454 (1997).
    [CrossRef] [PubMed]

2004 (3)

2003 (2)

2002 (3)

J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030 (2002).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

2001 (1)

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1997 (1)

1995 (2)

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
[CrossRef]

1984 (1)

G. R. Torr, Am. J. Phys. 52, 402 (1984).
[CrossRef]

Al-Koussa, M.

Blonigen, F.

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
[CrossRef]

Dalecki, D.

D. Dalecki, Annu. Rev. Biomed. Eng. 6, 18.1 (2004).
[CrossRef]

DiMarzio, C. A.

Goy, P.

Gross, M.

Jacques, S. L.

Jiao, S.-L.

Ku, G.

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Li, J.

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
[CrossRef]

Marquez, G.

Murray, T. W.

Nieva, A.

Nightingale, K.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

Roy, R. A.

Saint-Jalmes, H.

Sakadzic, S.

S. Sakadzic and L.-H. V. Wang, Opt. Lett. 29, 2770 (2004).
[CrossRef] [PubMed]

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Sfez, B. G.

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

Sui, L.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
[CrossRef]

Torr, G. R.

G. R. Torr, Am. J. Phys. 52, 402 (1984).
[CrossRef]

Trahey, G.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

Wang, L.-H. V.

Yao, G.

Zhao, X.

Am. J. Phys. (1)

G. R. Torr, Am. J. Phys. 52, 402 (1984).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

D. Dalecki, Annu. Rev. Biomed. Eng. 6, 18.1 (2004).
[CrossRef]

Appl. Opt. (1)

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. E (1)

S. Sakadzic and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Physica B (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Proc. SPIE (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, in Proc. SPIE 1888, 500 (1993).
[CrossRef]

Ultrasound Med. Biol. (1)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Ultrasound Med. Biol. 28, 227 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: L, laser; CCD, CCD camera; RF amp, RF amplifier; FG, function generator; PDG, pulse-delay generator; T, ultrasound transducer; S, sample; LT, lens tube; R, rubber; PC, personal computer.

Fig. 2
Fig. 2

Comparison of signals defined as changes in speckle contrast (a) for TARF and quasi-CW mechanisms applied at different ultrasonic pressures and (b) in TARF and quasi-CW regimes, varying CCD trigger delay times with an ultrasonic pressure of 2 MPa .

Fig. 3
Fig. 3

Comparison of 1D images of two objects dyed with Trypan Blue in a 1.9 cm thick phantom with varying ultrasonic pressures.

Fig. 4
Fig. 4

(a) 2D image of two objects dyed with Trypan Blue embedded in a 1.9 cm thick phantom acquired by using the 1.5 MPa quasi-CW mechanism without any signal averaging. (b) 2D image with 15% thresholding. (c) Photograph of the phantom.

Metrics