Abstract

Lensless in-line digital holographic interferometry has the potential for vibration analysis of objects smaller than 5mm in diameter. This is particularly useful for dynamic characterization of microelectromechanical systems devices. To achieve this, there is a need to magnify the object wave, which is done using a diverging beam. It is observed that an increase in the object-to-CCD distance increases the sensitivity of the amplitude-modulated time-average fringes. At the same time the effect on phase information that represents the mean static deformation of a vibrating object is studied. It is also observed that a reduction in the object-to-CCD distance increases the phase sensitivity as evidenced by the double-exposure time-average fringes. The experimental observation and a theoretical explanation for this contradictory phenomenon are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, Appl. Opt. 33, 179 (1994).
    [Crossref] [PubMed]
  2. G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
    [Crossref] [PubMed]
  3. J. G. Sucerquia, W. Xu, S. K. Stephan, K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
    [Crossref]
  4. L. Xu, X. Peng, J. Miao, and A. K. Asundi, Appl. Opt. 40, 5046 (2001).
    [Crossref]
  5. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, Appl. Opt. 38, 7056 (1999).
    [Crossref]
  6. P. Picart, J. Level, D. Mounier, and S. Gougeon, Appl. Opt. 44, 337 (2005).
    [Crossref] [PubMed]
  7. D. Gabor, Nature 161, 777 (1948).
    [Crossref] [PubMed]
  8. T. M. Kreis and W. Juptner, Opt. Eng. 36, 2357 (1997).
    [Crossref]
  9. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [Crossref]
  10. G. Pedrini and H. J. Tiziani, Appl. Opt. 41, 4489 (2002).
    [Crossref] [PubMed]
  11. P. Picart, J. Leval, D. Mounier, and S. Gougeon, Opt. Lett. 28, 1900 (2003).
    [Crossref] [PubMed]
  12. N. Demoli and D. Vukicevic, Opt. Lett. 29, 2423 (2004).
    [Crossref] [PubMed]
  13. A. Asundi and V. R. Singh, Appl. Opt. 45, 2391 (2006).
    [Crossref] [PubMed]
  14. L. Xu, J. Miao, and A. Asundi, Opt. Eng. 39, 3214 (2000).
    [Crossref]
  15. U. Schnars and W. Juptner, Meas. Sci. Technol. 13, 85 (2002).
    [Crossref]

2006 (2)

2005 (1)

2004 (1)

2003 (2)

2002 (2)

G. Pedrini and H. J. Tiziani, Appl. Opt. 41, 4489 (2002).
[Crossref] [PubMed]

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, 85 (2002).
[Crossref]

2001 (1)

2000 (2)

1999 (1)

1997 (1)

T. M. Kreis and W. Juptner, Opt. Eng. 36, 2357 (1997).
[Crossref]

1994 (1)

1948 (1)

D. Gabor, Nature 161, 777 (1948).
[Crossref] [PubMed]

Asundi, A.

A. Asundi and V. R. Singh, Appl. Opt. 45, 2391 (2006).
[Crossref] [PubMed]

L. Xu, J. Miao, and A. Asundi, Opt. Eng. 39, 3214 (2000).
[Crossref]

Asundi, A. K.

Cuche, E.

Demoli, N.

Depeursinge, C.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[Crossref] [PubMed]

Gougeon, S.

Jericho, K.

Jericho, M. H.

Juptner, W.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, 85 (2002).
[Crossref]

T. M. Kreis and W. Juptner, Opt. Eng. 36, 2357 (1997).
[Crossref]

U. Schnars and W. Juptner, Appl. Opt. 33, 179 (1994).
[Crossref] [PubMed]

Klages, P.

Kreis, T. M.

T. M. Kreis and W. Juptner, Opt. Eng. 36, 2357 (1997).
[Crossref]

Kreuzer, H. J.

Leval, J.

Level, J.

Marquet, P.

Meng, H.

Miao, J.

Mounier, D.

Pan, G.

Pedrini, G.

Peng, X.

Picart, P.

Santoyo, F. M.

Schedin, S.

Schnars, U.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, 85 (2002).
[Crossref]

U. Schnars and W. Juptner, Appl. Opt. 33, 179 (1994).
[Crossref] [PubMed]

Singh, V. R.

Stephan, S. K.

Sucerquia, J. G.

Tiziani, H. J.

Vukicevic, D.

Xu, L.

Xu, W.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) In-line digital holographic recording mechanism. (b) Object illumination by the diverging beam.

Fig. 2
Fig. 2

Experimental setup of in-line digital holographic interferometry.

Fig. 3
Fig. 3

Reconstructed intensity from time average holograms at (a) 270, (b) 350, (c) 410 mm .

Fig. 4
Fig. 4

Phase subtraction showing the deformation fringes reconstructed at (a) 270 mm , (b) 350 mm , (c) 410 mm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O ( x , y , t ) = O 0 ( x , y ) exp [ i ϕ 0 ( x , y ) ] exp [ i ( K z ) ] ,
H ( ξ , η ) = 0 τ I ( ξ , η ) d τ ,
U ( x , y ) = O 0 ( x , y ) exp [ i ϕ 0 ( x , y ) ] J 0 [ K z ( x , y ) ] .
U ( x , y ) = O 0 ( x , y ) J 0 [ K z ( x , y ) ] + background noise ,
ϕ 0 ( x , y ) = tan 1 Im [ U ( x , y ) ] Re [ U ( x , y ) ] .
D min = Δ ξ λ ( N Δ ξ + L ) ,

Metrics