Abstract

A new type of tunable narrowband filter is proposed. This filter is a combination of a Fabry–Perot etalon, which permits the selection of a comb of discrete narrow bands, and a high-efficiency rotating volume Bragg grating recorded in photo-thermo-refractive glass, which permits tuning between the Fabry–Perot resonances. A tunable filter for fixed wavelengths in the region of 1.5μm with a spectral width of 220pm (FWHM), separation between channels of 800pm, and throughput of 95% (losses <0.2dB) is demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, Appl. Opt. 41, 3277 (2002).
    [CrossRef] [PubMed]
  2. L. Domash, M. Wu, N. Nemchuk, and E. Ma, J. Lightwave Technol. 22, 126 (2004).
    [CrossRef]
  3. J. Floriot, F. Lemarchand, and M. Lequime, Opt. Express 12, 6289 (2004).
    [CrossRef] [PubMed]
  4. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  5. O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).
  6. H. A. Macleod, Thin-Film Optical Filter, 3rd ed. (Taylor & Francis, 2001), pp. 37-53.
  7. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  9. J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, Opt. Express 12, 6642 (2004).
    [CrossRef] [PubMed]
  10. E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
    [CrossRef]

2005 (1)

E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
[CrossRef]

2004 (3)

2002 (1)

1999 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Amra, C.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Domash, L.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).

Floriot, J.

Glebov, L.

E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
[CrossRef]

Glebov, L. B.

J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, Opt. Express 12, 6642 (2004).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).

Glebova, L.

E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
[CrossRef]

Glebova, L. N.

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lemarchand, F.

Lequime, M.

Ma, E.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filter, 3rd ed. (Taylor & Francis, 2001), pp. 37-53.

Mehta, V.

Nemchuk, N.

Parmentier, R.

Rotari, E.

E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
[CrossRef]

Roth, J. M.

Smirnov, V. I.

J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, Opt. Express 12, 6642 (2004).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).

Thompson, C.

Tsui, J. M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Wu, M.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Lightwave Technol. (1)

Opt. Express (2)

Proc. SPIE (1)

E. Rotari, L. Glebova, and L. Glebov, Proc. SPIE 5709, 379 (2005).
[CrossRef]

Other (3)

O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, 'Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,' U.S. patent 6,586,141 (1 July 2003).

H. A. Macleod, Thin-Film Optical Filter, 3rd ed. (Taylor & Francis, 2001), pp. 37-53.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Tunable narrow bandpass FPB filter. TLS, tunable laser source; D, InGaAs photodiode.

Fig. 2
Fig. 2

Modeling of a combined FPB filter. (a) Reflection of the RBG for different increasing inclinations of the RBG (curve 1, θ = 3.06 ° ; curve 2, θ = 4.13 ° ; curve 3, θ = 10.79 ° ; curve 4, θ = 14.70 ° ) and transmission of the FPE (curve 5). (b) Transmission of the assembled filter for different increasing inclinations of the RBG. Values of θ for curves 1–4 are the same as in (a).

Fig. 3
Fig. 3

Experimental data for a FPB filter. (a) Reflection of the RBG for different increasing inclinations of the RBG (curves 1–4) and transmission of the FPE (curve 5). (b) Transmission of the assembled filter for different increasing inclinations of the RBG (curves 1–4).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ λ = 1 R π R λ 0 2 2 n 0 t , Δ λ = λ 0 2 2 n 0 t ,
λ 0 = cos ( asin ( sin ( θ ) n PTR ) ) λ R ,
FWHM FPE FWHM RBG < FSR FPE .

Metrics